Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeQuantum simulation of generic spin exchange models in Floquet-engineered Rydberg atom arrays
Although quantum simulation can give insight into elusive or intractable physical phenomena, many quantum simulators are unavoidably limited in the models they mimic. Such is also the case for atom arrays interacting via Rydberg states - a platform potentially capable of simulating any kind of spin exchange model, albeit with currently unattainable experimental capabilities. Here, we propose a new route towards simulating generic spin exchange Hamiltonians in atom arrays, using Floquet engineering with both global and local control. To demonstrate the versatility and applicability of our approach, we numerically investigate the generation of several spin exchange models which have yet to be realized in atom arrays, using only previously-demonstrated experimental capabilities. Our proposed scheme can be readily explored in many existing setups, providing a path to investigate a large class of exotic quantum spin models.
Completely Discretized, Finite Quantum Mechanics
I propose a version of quantum mechanics featuring a discrete and finite number of states that is plausibly a model of the real world. The model is based on standard unitary quantum theory of a closed system with a finite-dimensional Hilbert space. Given certain simple conditions on the spectrum of the Hamiltonian, Schr\"odinger evolution is periodic, and it is straightforward to replace continuous time with a discrete version, with the result that the system only visits a discrete and finite set of state vectors. The biggest challenges to the viability of such a model come from cosmological considerations. The theory may have implications for questions of mathematical realism and finitism.
Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation
The theory of open quantum systems lays the foundations for a substantial part of modern research in quantum science and engineering. Rooted in the dimensionality of their extended Hilbert spaces, the high computational complexity of simulating open quantum systems calls for the development of strategies to approximate their dynamics. In this paper, we present an approach for tackling open quantum system dynamics. Using an exact probabilistic formulation of quantum physics based on positive operator-valued measure (POVM), we compactly represent quantum states with autoregressive transformer neural networks; such networks bring significant algorithmic flexibility due to efficient exact sampling and tractable density. We further introduce the concept of String States to partially restore the symmetry of the autoregressive transformer neural network and improve the description of local correlations. Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator using a forward-backward trapezoid method and find the steady state via a variational formulation. Our approach is benchmarked on prototypical one and two-dimensional systems, finding results which closely track the exact solution and achieve higher accuracy than alternative approaches based on using Markov chain Monte Carlo to sample restricted Boltzmann machines. Our work provides general methods for understanding quantum dynamics in various contexts, as well as techniques for solving high-dimensional probabilistic differential equations in classical setups.
Classical Glasses, Black Holes, and Strange Quantum Liquids
From the dynamics of a broad class of classical mean-field glass models one may obtain a quantum model with finite zero-temperature entropy, a quantum transition at zero temperature, and a time-reparametrization (quasi-)invariance in the dynamical equations for correlations. The low eigenvalue spectrum of the resulting quantum model is directly related to the structure and exploration of metastable states in the landscape of the original classical glass model. This mapping reveals deep connections between classical glasses and the properties of SYK-like models.
Scalable quantum neural networks by few quantum resources
This paper focuses on the construction of a general parametric model that can be implemented executing multiple swap tests over few qubits and applying a suitable measurement protocol. The model turns out to be equivalent to a two-layer feedforward neural network which can be realized combining small quantum modules. The advantages and the perspectives of the proposed quantum method are discussed.
The probabilistic world
Physics is based on probabilities as fundamental entities of a mathematical description. Expectation values of observables are computed according to the classical statistical rule. The overall probability distribution for one world covers all times. The quantum formalism arises once one focuses on the evolution of the time-local probabilistic information. Wave functions or the density matrix allow the formulation of a general linear evolution law for classical statistics. The quantum formalism for classical statistics is a powerful tool which allows us to implement for generalized Ising models the momentum observable with the associated Fourier representation. The association of operators to observables permits the computation of expectation values in terms of the density matrix by the usual quantum rule. We show that probabilistic cellular automata are quantum systems in a formulation with discrete time steps and real wave functions. With a complex structure the evolution operator for automata can be expressed in terms of a Hamiltonian involving fermionic creation and annihilation operators. The time-local probabilistic information amounts to a subsystem of the overall probabilistic system which is correlated with its environment consisting of the past and future. Such subsystems typically involve probabilistic observables for which only a probability distribution for their possible measurement values is available. Incomplete statistics does not permit to compute classical correlation functions for arbitrary subsystem-observables. Bell's inequalities are not generally applicable.
Quantum Generative Diffusion Model
This paper introduces the Quantum Generative Diffusion Model (QGDM), a fully quantum-mechanical model for generating quantum state ensembles, inspired by Denoising Diffusion Probabilistic Models. QGDM features a diffusion process that introduces timestep-dependent noise into quantum states, paired with a denoising mechanism trained to reverse this contamination. This model efficiently evolves a completely mixed state into a target quantum state post-training. Our comparative analysis with Quantum Generative Adversarial Networks demonstrates QGDM's superiority, with fidelity metrics exceeding 0.99 in numerical simulations involving up to 4 qubits. Additionally, we present a Resource-Efficient version of QGDM (RE-QGDM), which minimizes the need for auxiliary qubits while maintaining impressive generative capabilities for tasks involving up to 8 qubits. These results showcase the proposed models' potential for tackling challenging quantum generation problems.
Quantum Diffusion Models
We propose a quantum version of a generative diffusion model. In this algorithm, artificial neural networks are replaced with parameterized quantum circuits, in order to directly generate quantum states. We present both a full quantum and a latent quantum version of the algorithm; we also present a conditioned version of these models. The models' performances have been evaluated using quantitative metrics complemented by qualitative assessments. An implementation of a simplified version of the algorithm has been executed on real NISQ quantum hardware.
Quantum machine learning for image classification
Image classification, a pivotal task in multiple industries, faces computational challenges due to the burgeoning volume of visual data. This research addresses these challenges by introducing two quantum machine learning models that leverage the principles of quantum mechanics for effective computations. Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era, where circuits with a large number of qubits are currently infeasible. This model demonstrated a record-breaking classification accuracy of 99.21% on the full MNIST dataset, surpassing the performance of known quantum-classical models, while having eight times fewer parameters than its classical counterpart. Also, the results of testing this hybrid model on a Medical MNIST (classification accuracy over 99%), and on CIFAR-10 (classification accuracy over 82%), can serve as evidence of the generalizability of the model and highlights the efficiency of quantum layers in distinguishing common features of input data. Our second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process. The model matches the performance of its classical counterpart, having four times fewer trainable parameters, and outperforms a classical model with equal weight parameters. These models represent advancements in quantum machine learning research and illuminate the path towards more accurate image classification systems.
QAISim: A Toolkit for Modeling and Simulation of AI in Quantum Cloud Computing Environments
Quantum computing offers new ways to explore the theory of computation via the laws of quantum mechanics. Due to the rising demand for quantum computing resources, there is growing interest in developing cloud-based quantum resource sharing platforms that enable researchers to test and execute their algorithms on real quantum hardware. These cloud-based systems face a fundamental challenge in efficiently allocating quantum hardware resources to fulfill the growing computational demand of modern Internet of Things (IoT) applications. So far, attempts have been made in order to make efficient resource allocation, ranging from heuristic-based solutions to machine learning. In this work, we employ quantum reinforcement learning based on parameterized quantum circuits to address the resource allocation problem to support large IoT networks. We propose a python-based toolkit called QAISim for the simulation and modeling of Quantum Artificial Intelligence (QAI) models for designing resource management policies in quantum cloud environments. We have simulated policy gradient and Deep Q-Learning algorithms for reinforcement learning. QAISim exhibits a substantial reduction in model complexity compared to its classical counterparts with fewer trainable variables.
Comparing coherent and incoherent models for quantum homogenization
Here we investigate the role of quantum interference in the quantum homogenizer, whose convergence properties model a thermalization process. In the original quantum homogenizer protocol, a system qubit converges to the state of identical reservoir qubits through partial-swap interactions, that allow interference between reservoir qubits. We design an alternative, incoherent quantum homogenizer, where each system-reservoir interaction is moderated by a control qubit using a controlled-swap interaction. We show that our incoherent homogenizer satisfies the essential conditions for homogenization, being able to transform a qubit from any state to any other state to arbitrary accuracy, with negligible impact on the reservoir qubits' states. Our results show that the convergence properties of homogenization machines that are important for modelling thermalization are not dependent on coherence between qubits in the homogenization protocol. We then derive bounds on the resources required to re-use the homogenizers for performing state transformations. This demonstrates that both homogenizers are universal for any number of homogenizations, for an increased resource cost.
Pauli Propagation: A Computational Framework for Simulating Quantum Systems
Classical methods to simulate quantum systems are not only a key element of the physicist's toolkit for studying many-body models but are also increasingly important for verifying and challenging upcoming quantum computers. Pauli propagation has recently emerged as a promising new family of classical algorithms for simulating digital quantum systems. Here we provide a comprehensive account of Pauli propagation, tracing its algorithmic structure from its bit-level implementation and formulation as a tree-search problem, all the way to its high-level user applications for simulating quantum circuits and dynamics. Utilising these observations, we present PauliPropagation.jl, a Julia software package that can perform rapid Pauli propagation simulation straight out-of-the-box and can be used more generally as a building block for novel simulation algorithms.
Driving Enhanced Exciton Transfer by Automatic Differentiation
We model and study the processes of excitation, absorption, and transfer in various networks. The model consists of a harmonic oscillator representing a single-mode radiation field, a qubit acting as an antenna, a network through which the excitation propagates, and a qubit at the end serving as a sink. We investigate how off-resonant excitations can be optimally absorbed and transmitted through the network. Three strategies are considered: optimising network energies, adjusting the couplings between the radiation field, the antenna, and the network, or introducing and optimising driving fields at the start and end of the network. These strategies are tested on three different types of network with increasing complexity: nearest-neighbour and star configurations, and one associated with the Fenna-Matthews-Olson complex. The results show that, among the various strategies, the introduction of driving fields is the most effective, leading to a significant increase in the probability of reaching the sink in a given time. This result remains stable across networks of varying dimensionalities and types, and the driving process requires only a few parameters to be effective.
Classification with Quantum Neural Networks on Near Term Processors
We introduce a quantum neural network, QNN, that can represent labeled data, classical or quantum, and be trained by supervised learning. The quantum circuit consists of a sequence of parameter dependent unitary transformations which acts on an input quantum state. For binary classification a single Pauli operator is measured on a designated readout qubit. The measured output is the quantum neural network's predictor of the binary label of the input state. First we look at classifying classical data sets which consist of n-bit strings with binary labels. The input quantum state is an n-bit computational basis state corresponding to a sample string. We show how to design a circuit made from two qubit unitaries that can correctly represent the label of any Boolean function of n bits. For certain label functions the circuit is exponentially long. We introduce parameter dependent unitaries that can be adapted by supervised learning of labeled data. We study an example of real world data consisting of downsampled images of handwritten digits each of which has been labeled as one of two distinct digits. We show through classical simulation that parameters can be found that allow the QNN to learn to correctly distinguish the two data sets. We then discuss presenting the data as quantum superpositions of computational basis states corresponding to different label values. Here we show through simulation that learning is possible. We consider using our QNN to learn the label of a general quantum state. By example we show that this can be done. Our work is exploratory and relies on the classical simulation of small quantum systems. The QNN proposed here was designed with near-term quantum processors in mind. Therefore it will be possible to run this QNN on a near term gate model quantum computer where its power can be explored beyond what can be explored with simulation.
A Quantum Algorithm for Solving Linear Differential Equations: Theory and Experiment
We present and experimentally realize a quantum algorithm for efficiently solving the following problem: given an Ntimes N matrix M, an N-dimensional vector emph{b}, and an initial vector emph{x}(0), obtain a target vector emph{x}(t) as a function of time t according to the constraint demph{x}(t)/dt=Memph{x}(t)+emph{b}. We show that our algorithm exhibits an exponential speedup over its classical counterpart in certain circumstances. In addition, we demonstrate our quantum algorithm for a 4times4 linear differential equation using a 4-qubit nuclear magnetic resonance quantum information processor. Our algorithm provides a key technique for solving many important problems which rely on the solutions to linear differential equations.
A quantum walk control plane for distributed quantum computing in quantum networks
Quantum networks are complex systems formed by the interaction among quantum processors through quantum channels. Analogous to classical computer networks, quantum networks allow for the distribution of quantum computation among quantum computers. In this work, we describe a quantum walk protocol to perform distributed quantum computing in a quantum network. The protocol uses a quantum walk as a quantum control signal to perform distributed quantum operations. We consider a generalization of the discrete-time coined quantum walk model that accounts for the interaction between a quantum walker system in the network graph with quantum registers inside the network nodes. The protocol logically captures distributed quantum computing, abstracting hardware implementation and the transmission of quantum information through channels. Control signal transmission is mapped to the propagation of the walker system across the network, while interactions between the control layer and the quantum registers are embedded into the application of coin operators. We demonstrate how to use the quantum walker system to perform a distributed CNOT operation, which shows the universality of the protocol for distributed quantum computing. Furthermore, we apply the protocol to the task of entanglement distribution in a quantum network.
Quantum Hamiltonian Embedding of Images for Data Reuploading Classifiers
When applying quantum computing to machine learning tasks, one of the first considerations is the design of the quantum machine learning model itself. Conventionally, the design of quantum machine learning algorithms relies on the ``quantisation" of classical learning algorithms, such as using quantum linear algebra to implement important subroutines of classical algorithms, if not the entire algorithm, seeking to achieve quantum advantage through possible run-time accelerations brought by quantum computing. However, recent research has started questioning whether quantum advantage via speedup is the right goal for quantum machine learning [1]. Research also has been undertaken to exploit properties that are unique to quantum systems, such as quantum contextuality, to better design quantum machine learning models [2]. In this paper, we take an alternative approach by incorporating the heuristics and empirical evidences from the design of classical deep learning algorithms to the design of quantum neural networks. We first construct a model based on the data reuploading circuit [3] with the quantum Hamiltonian data embedding unitary [4]. Through numerical experiments on images datasets, including the famous MNIST and FashionMNIST datasets, we demonstrate that our model outperforms the quantum convolutional neural network (QCNN)[5] by a large margin (up to over 40% on MNIST test set). Based on the model design process and numerical results, we then laid out six principles for designing quantum machine learning models, especially quantum neural networks.
Analyzing Convergence in Quantum Neural Networks: Deviations from Neural Tangent Kernels
A quantum neural network (QNN) is a parameterized mapping efficiently implementable on near-term Noisy Intermediate-Scale Quantum (NISQ) computers. It can be used for supervised learning when combined with classical gradient-based optimizers. Despite the existing empirical and theoretical investigations, the convergence of QNN training is not fully understood. Inspired by the success of the neural tangent kernels (NTKs) in probing into the dynamics of classical neural networks, a recent line of works proposes to study over-parameterized QNNs by examining a quantum version of tangent kernels. In this work, we study the dynamics of QNNs and show that contrary to popular belief it is qualitatively different from that of any kernel regression: due to the unitarity of quantum operations, there is a non-negligible deviation from the tangent kernel regression derived at the random initialization. As a result of the deviation, we prove the at-most sublinear convergence for QNNs with Pauli measurements, which is beyond the explanatory power of any kernel regression dynamics. We then present the actual dynamics of QNNs in the limit of over-parameterization. The new dynamics capture the change of convergence rate during training and implies that the range of measurements is crucial to the fast QNN convergence.
The effect of data encoding on the expressive power of variational quantum machine learning models
Quantum computers can be used for supervised learning by treating parametrised quantum circuits as models that map data inputs to predictions. While a lot of work has been done to investigate practical implications of this approach, many important theoretical properties of these models remain unknown. Here we investigate how the strategy with which data is encoded into the model influences the expressive power of parametrised quantum circuits as function approximators. We show that one can naturally write a quantum model as a partial Fourier series in the data, where the accessible frequencies are determined by the nature of the data encoding gates in the circuit. By repeating simple data encoding gates multiple times, quantum models can access increasingly rich frequency spectra. We show that there exist quantum models which can realise all possible sets of Fourier coefficients, and therefore, if the accessible frequency spectrum is asymptotically rich enough, such models are universal function approximators.
Ergotropy and Capacity Optimization in Heisenberg Spin Chain Quantum Batteries
This study examines the performance of finite spin quantum batteries (QBs) using Heisenberg spin models with Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions. The QBs are modeled as interacting quantum spins in local inhomogeneous magnetic fields, inducing variable Zeeman splitting. We derive analytical expressions for the maximal extractable work, ergotropy and the capacity of QBs, as recently examined by Yang et al. [Phys. Rev. Lett. 131, 030402 (2023)]. These quantities are analytically linked through certain quantum correlations, as posited in the aforementioned study. Different Heisenberg spin chain models exhibit distinct behaviors under varying conditions, emphasizing the importance of model selection for optimizing QB performance. In antiferromagnetic (AFM) systems, maximum ergotropy occurs with a Zeeman splitting field applied to either spin, while ferromagnetic (FM) systems benefit from a uniform Zeeman field. Temperature significantly impacts QB performance, with ergotropy in the AFM case being generally more robust against temperature increases compared to the FM case. Incorporating DM and KSEA couplings can significantly enhance the capacity and ergotropy extraction of QBs. However, there exists a threshold beyond which additional increases in these interactions cause a sharp decline in capacity and ergotropy. This behavior is influenced by temperature and quantum coherence, which signal the occurrence of a sudden phase transition. The resource theory of quantum coherence proposed by Baumgratz et al. [Phys. Rev. Lett. 113, 140401 (2014)] plays a crucial role in enhancing ergotropy and capacity. However, ergotropy is limited by both the system's capacity and the amount of coherence. These findings support the theoretical framework of spin-based QBs and may benefit future research on quantum energy storage devices.
Designing a Quantum Network Protocol
The second quantum revolution brings with it the promise of a quantum internet. As the first quantum network hardware prototypes near completion new challenges emerge. A functional network is more than just the physical hardware, yet work on scalable quantum network systems is in its infancy. In this paper we present a quantum network protocol designed to enable end-to-end quantum communication in the face of the new fundamental and technical challenges brought by quantum mechanics. We develop a quantum data plane protocol that enables end-to-end quantum communication and can serve as a building block for more complex services. One of the key challenges in near-term quantum technology is decoherence -- the gradual decay of quantum information -- which imposes extremely stringent limits on storage times. Our protocol is designed to be efficient in the face of short quantum memory lifetimes. We demonstrate this using a simulator for quantum networks and show that the protocol is able to deliver its service even in the face of significant losses due to decoherence. Finally, we conclude by showing that the protocol remains functional on the extremely resource limited hardware that is being developed today underlining the timeliness of this work.
Hardware-efficient Variational Quantum Eigensolver for Small Molecules and Quantum Magnets
Quantum computers can be used to address molecular structure, materials science and condensed matter physics problems, which currently stretch the limits of existing high-performance computing resources. Finding exact numerical solutions to these interacting fermion problems has exponential cost, while Monte Carlo methods are plagued by the fermionic sign problem. These limitations of classical computational methods have made even few-atom molecular structures problems of practical interest for medium-sized quantum computers. Yet, thus far experimental implementations have been restricted to molecules involving only Period I elements. Here, we demonstrate the experimental optimization of up to six-qubit Hamiltonian problems with over a hundred Pauli terms, determining the ground state energy for molecules of increasing size, up to BeH2. This is enabled by a hardware-efficient variational quantum eigensolver with trial states specifically tailored to the available interactions in our quantum processor, combined with a compact encoding of fermionic Hamiltonians and a robust stochastic optimization routine. We further demonstrate the flexibility of our approach by applying the technique to a problem of quantum magnetism. Across all studied problems, we find agreement between experiment and numerical simulations with a noisy model of the device. These results help elucidate the requirements for scaling the method to larger systems, and aim at bridging the gap between problems at the forefront of high-performance computing and their implementation on quantum hardware.
Quantum walks: a comprehensive review
Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.
Introducing Quantum Computing into Statistical Physics: Random Walks and the Ising Model with Qiskit
Quantum computing offers a powerful new perspective on probabilistic and collective behaviors traditionally taught in statistical physics. This paper presents two classroom-ready modules that integrate quantum computing into the undergraduate curriculum using Qiskit: the quantum random walk and the Ising model. Both modules allow students to simulate and contrast classical and quantum systems, deepening their understanding of concepts such as superposition, interference, and statistical distributions. We outline the quantum circuits involved, provide sample code and student activities, and discuss how each example can be used to enhance student engagement with statistical physics. These modules are suitable for integration into courses in statistical mechanics, modern physics, or as part of an introductory unit on quantum computing.
Improving thermal state preparation of Sachdev-Ye-Kitaev model with reinforcement learning on quantum hardware
The Sachdev-Ye-Kitaev (SYK) model, known for its strong quantum correlations and chaotic behavior, serves as a key platform for quantum gravity studies. However, variationally preparing thermal states on near-term quantum processors for large systems (N>12, where N is the number of Majorana fermions) presents a significant challenge due to the rapid growth in the complexity of parameterized quantum circuits. This paper addresses this challenge by integrating reinforcement learning (RL) with convolutional neural networks, employing an iterative approach to optimize the quantum circuit and its parameters. The refinement process is guided by a composite reward signal derived from entropy and the expectation values of the SYK Hamiltonian. This approach reduces the number of CNOT gates by two orders of magnitude for systems Ngeq12 compared to traditional methods like first-order Trotterization. We demonstrate the effectiveness of the RL framework in both noiseless and noisy quantum hardware environments, maintaining high accuracy in thermal state preparation. This work advances a scalable, RL-based framework with applications for quantum gravity studies and out-of-time-ordered thermal correlators computation in quantum many-body systems on near-term quantum hardware. The code is available at https://github.com/Aqasch/solving_SYK_model_with_RL.
Random Quantum Circuits
Quantum circuits -- built from local unitary gates and local measurements -- are a new playground for quantum many-body physics and a tractable setting to explore universal collective phenomena far-from-equilibrium. These models have shed light on longstanding questions about thermalization and chaos, and on the underlying universal dynamics of quantum information and entanglement. In addition, such models generate new sets of questions and give rise to phenomena with no traditional analog, such as new dynamical phases in quantum systems that are monitored by an external observer. Quantum circuit dynamics is also topical in view of experimental progress in building digital quantum simulators that allow control of precisely these ingredients. Randomness in the circuit elements allows a high level of theoretical control, with a key theme being mappings between real-time quantum dynamics and effective classical lattice models or dynamical processes. Many of the universal phenomena that can be identified in this tractable setting apply to much wider classes of more structured many-body dynamics.
Quantum Multi-Model Fitting
Geometric model fitting is a challenging but fundamental computer vision problem. Recently, quantum optimization has been shown to enhance robust fitting for the case of a single model, while leaving the question of multi-model fitting open. In response to this challenge, this paper shows that the latter case can significantly benefit from quantum hardware and proposes the first quantum approach to multi-model fitting (MMF). We formulate MMF as a problem that can be efficiently sampled by modern adiabatic quantum computers without the relaxation of the objective function. We also propose an iterative and decomposed version of our method, which supports real-world-sized problems. The experimental evaluation demonstrates promising results on a variety of datasets. The source code is available at: https://github.com/FarinaMatteo/qmmf.
Federated learning with distributed fixed design quantum chips and quantum channels
The privacy in classical federated learning can be breached through the use of local gradient results along with engineered queries to the clients. However, quantum communication channels are considered more secure because a measurement on the channel causes a loss of information, which can be detected by the sender. Therefore, the quantum version of federated learning can be used to provide more privacy. Additionally, sending an N dimensional data vector through a quantum channel requires sending log N entangled qubits, which can potentially provide exponential efficiency if the data vector is utilized as quantum states. In this paper, we propose a quantum federated learning model where fixed design quantum chips are operated based on the quantum states sent by a centralized server. Based on the coming superposition states, the clients compute and then send their local gradients as quantum states to the server, where they are aggregated to update parameters. Since the server does not send model parameters, but instead sends the operator as a quantum state, the clients are not required to share the model. This allows for the creation of asynchronous learning models. In addition, the model as a quantum state is fed into client-side chips directly; therefore, it does not require measurements on the upcoming quantum state to obtain model parameters in order to compute gradients. This can provide efficiency over the models where the parameter vector is sent via classical or quantum channels and local gradients are obtained through the obtained values of these parameters.
Quantum Generative Modeling of Sequential Data with Trainable Token Embedding
Generative models are a class of machine learning models that aim to learn the underlying probability distribution of data. Unlike discriminative models, generative models focus on capturing the data's inherent structure, allowing them to generate new samples that resemble the original data. To fully exploit the potential of modeling probability distributions using quantum physics, a quantum-inspired generative model known as the Born machines have shown great advancements in learning classical and quantum data over matrix product state(MPS) framework. The Born machines support tractable log-likelihood, autoregressive and mask sampling, and have shown outstanding performance in various unsupervised learning tasks. However, much of the current research has been centered on improving the expressive power of MPS, predominantly embedding each token directly by a corresponding tensor index. In this study, we generalize the embedding method into trainable quantum measurement operators that can be simultaneously honed with MPS. Our study indicated that combined with trainable embedding, Born machines can exhibit better performance and learn deeper correlations from the dataset.
Reservoir Computing via Quantum Recurrent Neural Networks
Recent developments in quantum computing and machine learning have propelled the interdisciplinary study of quantum machine learning. Sequential modeling is an important task with high scientific and commercial value. Existing VQC or QNN-based methods require significant computational resources to perform the gradient-based optimization of a larger number of quantum circuit parameters. The major drawback is that such quantum gradient calculation requires a large amount of circuit evaluation, posing challenges in current near-term quantum hardware and simulation software. In this work, we approach sequential modeling by applying a reservoir computing (RC) framework to quantum recurrent neural networks (QRNN-RC) that are based on classical RNN, LSTM and GRU. The main idea to this RC approach is that the QRNN with randomly initialized weights is treated as a dynamical system and only the final classical linear layer is trained. Our numerical simulations show that the QRNN-RC can reach results comparable to fully trained QRNN models for several function approximation and time series prediction tasks. Since the QRNN training complexity is significantly reduced, the proposed model trains notably faster. In this work we also compare to corresponding classical RNN-based RC implementations and show that the quantum version learns faster by requiring fewer training epochs in most cases. Our results demonstrate a new possibility to utilize quantum neural network for sequential modeling with greater quantum hardware efficiency, an important design consideration for noisy intermediate-scale quantum (NISQ) computers.
Symmetry-invariant quantum machine learning force fields
Machine learning techniques are essential tools to compute efficient, yet accurate, force fields for atomistic simulations. This approach has recently been extended to incorporate quantum computational methods, making use of variational quantum learning models to predict potential energy surfaces and atomic forces from ab initio training data. However, the trainability and scalability of such models are still limited, due to both theoretical and practical barriers. Inspired by recent developments in geometric classical and quantum machine learning, here we design quantum neural networks that explicitly incorporate, as a data-inspired prior, an extensive set of physically relevant symmetries. We find that our invariant quantum learning models outperform their more generic counterparts on individual molecules of growing complexity. Furthermore, we study a water dimer as a minimal example of a system with multiple components, showcasing the versatility of our proposed approach and opening the way towards larger simulations. Our results suggest that molecular force fields generation can significantly profit from leveraging the framework of geometric quantum machine learning, and that chemical systems represent, in fact, an interesting and rich playground for the development and application of advanced quantum machine learning tools.
A Generative Modeling Approach Using Quantum Gates
In recent years, quantum computing has emerged as a promising technology for solving complex computational problems. Generative modeling is a technique that allows us to learn and generate new data samples similar to the original dataset. In this paper, we propose a generative modeling approach using quantum gates to generate new samples from a given dataset. We start with a brief introduction to quantum computing and generative modeling. Then, we describe our proposed approach, which involves encoding the dataset into quantum states and using quantum gates to manipulate these states to generate new samples. We also provide mathematical details of our approach and demonstrate its effectiveness through experimental results on various datasets.
Explicit gate construction of block-encoding for Hamiltonians needed for simulating partial differential equations
Quantum computation is an emerging technology with important potential for solving certain problems pivotal in various scientific and engineering disciplines. This paper introduces an efficient quantum protocol for the explicit construction of the block-encoding for an important class of Hamiltonians. Using the Schrodingerisation technique -- which converts non-conservative PDEs into conservative ones -- this particular class of Hamiltonians is shown to be sufficient for simulating any linear partial differential equations that have coefficients which are polynomial functions. The class of Hamiltonians consist of discretisations of polynomial products and sums of position and momentum operators. This construction is explicit and leverages minimal one- and two-qubit operations. The explicit construction of this block-encoding forms a fundamental building block for constructing the unitary evolution operator for this Hamiltonian. The proposed algorithm exhibits polynomial scaling with respect to the spatial partitioning size, suggesting an exponential speedup over classical finite-difference methods. This work provides an important foundation for building explicit and efficient quantum circuits for solving partial differential equations.
Variational Quantum algorithm for Poisson equation
The Poisson equation has wide applications in many areas of science and engineering. Although there are some quantum algorithms that can efficiently solve the Poisson equation, they generally require a fault-tolerant quantum computer which is beyond the current technology. In this paper, we propose a Variational Quantum Algorithm (VQA) to solve the Poisson equation, which can be executed on Noise Intermediate-Scale Quantum (NISQ) devices. In detail, we first adopt the finite difference method to transform the Poisson equation into a linear system. Then, according to the special structure of the linear system, we find an explicit tensor product decomposition, with only 2log n+1 items, of its coefficient matrix under a specific set of simple operators, where n is the dimension of the coefficient matrix. This implies that the proposed VQA only needs O(log n) measurements, which dramatically reduce quantum resources. Additionally, we perform quantum Bell measurements to efficiently evaluate the expectation values of simple operators. Numerical experiments demonstrate that our algorithm can effectively solve the Poisson equation.
Multi-state quantum simulations via model-space quantum imaginary time evolution
We introduce the framework of model space into quantum imaginary time evolution (QITE) to enable stable estimation of ground and excited states using a quantum computer. Model-space QITE (MSQITE) propagates a model space to the exact one by retaining its orthogonality, and hence is able to describe multiple states simultaneously. The quantum Lanczos (QLanczos) algorithm is extended to MSQITE to accelerate the convergence. The present scheme is found to outperform both the standard QLanczos and the recently proposed folded-spectrum QITE in simulating excited states. Moreover, we demonstrate that spin contamination can be effectively removed by shifting the imaginary time propagator, and thus excited states with a particular spin quantum number are efficiently captured without falling into the different spin states that have lower energies. We also investigate how different levels of the unitary approximation employed in MSQITE can affect the results. The effectiveness of the algorithm over QITE is demonstrated by noise simulations for the H4 model system.
1d-qt-ideal-solver: 1D Idealized Quantum Tunneling Solver with Absorbing Boundaries
We present 1d-qt-ideal-solver, an open-source Python library for simulating one-dimensional quantum tunneling dynamics under idealized coherent conditions. The solver implements the split-operator method with second-order Trotter-Suzuki factorization, utilizing FFT-based spectral differentiation for the kinetic operator and complex absorbing potentials to eliminate boundary reflections. Numba just-in-time compilation achieves performance comparable to compiled languages while maintaining code accessibility. We validate the implementation through two canonical test cases: rectangular barriers modeling field emission through oxide layers and Gaussian barriers approximating scanning tunneling microscopy interactions. Both simulations achieve exceptional numerical fidelity with machine-precision energy conservation over femtosecond-scale propagation. Comparative analysis employing information-theoretic measures and nonparametric hypothesis tests reveals that rectangular barriers exhibit moderately higher transmission coefficients than Gaussian barriers in the over-barrier regime, though Jensen-Shannon divergence analysis indicates modest practical differences between geometries. Phase space analysis confirms complete decoherence when averaged over spatial-temporal domains. The library name reflects its scope: idealized signifies deliberate exclusion of dissipation, environmental coupling, and many-body interactions, limiting applicability to qualitative insights and pedagogical purposes rather than quantitative experimental predictions. Distributed under the MIT License, the library provides a deployable tool for teaching quantum mechanics and preliminary exploration of tunneling dynamics.
Qutrit-inspired Fully Self-supervised Shallow Quantum Learning Network for Brain Tumor Segmentation
Classical self-supervised networks suffer from convergence problems and reduced segmentation accuracy due to forceful termination. Qubits or bi-level quantum bits often describe quantum neural network models. In this article, a novel self-supervised shallow learning network model exploiting the sophisticated three-level qutrit-inspired quantum information system referred to as Quantum Fully Self-Supervised Neural Network (QFS-Net) is presented for automated segmentation of brain MR images. The QFS-Net model comprises a trinity of a layered structure of qutrits inter-connected through parametric Hadamard gates using an 8-connected second-order neighborhood-based topology. The non-linear transformation of the qutrit states allows the underlying quantum neural network model to encode the quantum states, thereby enabling a faster self-organized counter-propagation of these states between the layers without supervision. The suggested QFS-Net model is tailored and extensively validated on Cancer Imaging Archive (TCIA) data set collected from Nature repository and also compared with state of the art supervised (U-Net and URes-Net architectures) and the self-supervised QIS-Net model. Results shed promising segmented outcome in detecting tumors in terms of dice similarity and accuracy with minimum human intervention and computational resources.
SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks
Recent advances in quantum information science enabled the development of quantum communication network prototypes and created an opportunity to study full-stack quantum network architectures. This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator. Our simulator consists of five modules: Hardware models, Entanglement Management protocols, Resource Management, Network Management, and Application. This framework is suitable for simulation of quantum network prototypes that capture the breadth of current and future hardware technologies and protocols. We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories. The simulation capabilities are illustrated in three use cases. We show the dependence of quantum network throughput on several key hardware parameters and study the impact of classical control message latency. We also investigate quantum memory usage efficiency in routers and demonstrate that redistributing memory according to anticipated load increases network capacity by 69.1% and throughput by 6.8%. We design SeQUeNCe to enable comparisons of alternative quantum network technologies, experiment planning, and validation and to aid with new protocol design. We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
Quantum computing with Qiskit
We describe Qiskit, a software development kit for quantum information science. We discuss the key design decisions that have shaped its development, and examine the software architecture and its core components. We demonstrate an end-to-end workflow for solving a problem in condensed matter physics on a quantum computer that serves to highlight some of Qiskit's capabilities, for example the representation and optimization of circuits at various abstraction levels, its scalability and retargetability to new gates, and the use of quantum-classical computations via dynamic circuits. Lastly, we discuss some of the ecosystem of tools and plugins that extend Qiskit for various tasks, and the future ahead.
Enhancing Quantum Variational Algorithms with Zero Noise Extrapolation via Neural Networks
In the emergent realm of quantum computing, the Variational Quantum Eigensolver (VQE) stands out as a promising algorithm for solving complex quantum problems, especially in the noisy intermediate-scale quantum (NISQ) era. However, the ubiquitous presence of noise in quantum devices often limits the accuracy and reliability of VQE outcomes. This research introduces a novel approach to ameliorate this challenge by utilizing neural networks for zero noise extrapolation (ZNE) in VQE computations. By employing the Qiskit framework, we crafted parameterized quantum circuits using the RY-RZ ansatz and examined their behavior under varying levels of depolarizing noise. Our investigations spanned from determining the expectation values of a Hamiltonian, defined as a tensor product of Z operators, under different noise intensities to extracting the ground state energy. To bridge the observed outcomes under noise with the ideal noise-free scenario, we trained a Feed Forward Neural Network on the error probabilities and their associated expectation values. Remarkably, our model proficiently predicted the VQE outcome under hypothetical noise-free conditions. By juxtaposing the simulation results with real quantum device executions, we unveiled the discrepancies induced by noise and showcased the efficacy of our neural network-based ZNE technique in rectifying them. This integrative approach not only paves the way for enhanced accuracy in VQE computations on NISQ devices but also underlines the immense potential of hybrid quantum-classical paradigms in circumventing the challenges posed by quantum noise. Through this research, we envision a future where quantum algorithms can be reliably executed on noisy devices, bringing us one step closer to realizing the full potential of quantum computing.
Optimizing quantum phase estimation for the simulation of Hamiltonian eigenstates
We revisit quantum phase estimation algorithms for the purpose of obtaining the energy levels of many-body Hamiltonians and pay particular attention to the statistical analysis of their outputs. We introduce the mean phase direction of the parent distribution associated with eigenstate inputs as a new post-processing tool. By connecting it with the unknown phase, we find that if used as its direct estimator, it exceeds the accuracy of the standard majority rule using one less bit of resolution, making evident that it can also be inverted to provide unbiased estimation. Moreover, we show how to directly use this quantity to accurately find the energy levels when the initialized state is an eigenstate of the simulated propagator during the whole time evolution, which allows for shallower algorithms. We then use IBM Q hardware to carry out the digital quantum simulation of three toy models: a two-level system, a two-spin Ising model and a two-site Hubbard model at half-filling. Methodologies are provided to implement Trotterization and reduce the variability of results in noisy intermediate scale quantum computers.
Quantum Monte Carlo simulations in the restricted Hilbert space of Rydberg atom arrays
Rydberg atom arrays have emerged as a powerful platform to simulate a number of exotic quantum ground states and phase transitions. To verify these capabilities numerically, we develop a versatile quantum Monte Carlo sampling technique which operates in the reduced Hilbert space generated by enforcing the constraint of a Rydberg blockade. We use the framework of stochastic series expansion and show that in the restricted space, the configuration space of operator strings can be understood as a hard rod gas in d+1 dimensions. We use this mapping to develop cluster algorithms which can be visualized as various non-local movements of rods. We study the efficiency of each of our updates individually and collectively. To elucidate the utility of the algorithm, we show that it can efficiently generate the phase diagram of a Rydberg atom array, to temperatures much smaller than all energy scales involved, on a Kagom\'e link lattice. This is of broad interest as the presence of a Z_2 spin liquid has been hypothesized recently.
An Introduction to Quantum Computing
Quantum Computing is a new and exciting field at the intersection of mathematics, computer science and physics. It concerns a utilization of quantum mechanics to improve the efficiency of computation. Here we present a gentle introduction to some of the ideas in quantum computing. The paper begins by motivating the central ideas of quantum mechanics and quantum computation with simple toy models. From there we move on to a formal presentation of the small fraction of (finite dimensional) quantum mechanics that we will need for basic quantum computation. Central notions of quantum architecture (qubits and quantum gates) are described. The paper ends with a presentation of one of the simplest quantum algorithms: Deutsch's algorithm. Our presentation demands neither advanced mathematics nor advanced physics.
Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the Race to Practical Quantum Advantage
While recent breakthroughs have proven the ability of noisy intermediate-scale quantum (NISQ) devices to achieve quantum advantage in classically-intractable sampling tasks, the use of these devices for solving more practically relevant computational problems remains a challenge. Proposals for attaining practical quantum advantage typically involve parametrized quantum circuits (PQCs), whose parameters can be optimized to find solutions to diverse problems throughout quantum simulation and machine learning. However, training PQCs for real-world problems remains a significant practical challenge, largely due to the phenomenon of barren plateaus in the optimization landscapes of randomly-initialized quantum circuits. In this work, we introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for PQCs, which we show significantly improves the trainability and performance of PQCs on a variety of problems. Given a specific optimization task, this method first utilizes tensor network (TN) simulations to identify a promising quantum state, which is then converted into gate parameters of a PQC by means of a high-performance decomposition procedure. We show that this learned initialization avoids barren plateaus, and effectively translates increases in classical resources to enhanced performance and speed in training quantum circuits. By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing, and opens up new avenues to harness the power of modern quantum hardware for realizing practical quantum advantage.
Quantum Denoising Diffusion Models
In recent years, machine learning models like DALL-E, Craiyon, and Stable Diffusion have gained significant attention for their ability to generate high-resolution images from concise descriptions. Concurrently, quantum computing is showing promising advances, especially with quantum machine learning which capitalizes on quantum mechanics to meet the increasing computational requirements of traditional machine learning algorithms. This paper explores the integration of quantum machine learning and variational quantum circuits to augment the efficacy of diffusion-based image generation models. Specifically, we address two challenges of classical diffusion models: their low sampling speed and the extensive parameter requirements. We introduce two quantum diffusion models and benchmark their capabilities against their classical counterparts using MNIST digits, Fashion MNIST, and CIFAR-10. Our models surpass the classical models with similar parameter counts in terms of performance metrics FID, SSIM, and PSNR. Moreover, we introduce a consistency model unitary single sampling architecture that combines the diffusion procedure into a single step, enabling a fast one-step image generation.
Foundations for Near-Term Quantum Natural Language Processing
We provide conceptual and mathematical foundations for near-term quantum natural language processing (QNLP), and do so in quantum computer scientist friendly terms. We opted for an expository presentation style, and provide references for supporting empirical evidence and formal statements concerning mathematical generality. We recall how the quantum model for natural language that we employ canonically combines linguistic meanings with rich linguistic structure, most notably grammar. In particular, the fact that it takes a quantum-like model to combine meaning and structure, establishes QNLP as quantum-native, on par with simulation of quantum systems. Moreover, the now leading Noisy Intermediate-Scale Quantum (NISQ) paradigm for encoding classical data on quantum hardware, variational quantum circuits, makes NISQ exceptionally QNLP-friendly: linguistic structure can be encoded as a free lunch, in contrast to the apparently exponentially expensive classical encoding of grammar. Quantum speed-up for QNLP tasks has already been established in previous work with Will Zeng. Here we provide a broader range of tasks which all enjoy the same advantage. Diagrammatic reasoning is at the heart of QNLP. Firstly, the quantum model interprets language as quantum processes via the diagrammatic formalism of categorical quantum mechanics. Secondly, these diagrams are via ZX-calculus translated into quantum circuits. Parameterisations of meanings then become the circuit variables to be learned. Our encoding of linguistic structure within quantum circuits also embodies a novel approach for establishing word-meanings that goes beyond the current standards in mainstream AI, by placing linguistic structure at the heart of Wittgenstein's meaning-is-context.
Quantum coherence and distribution of N-partite bosonic fields in noninertial frame
We study the quantum coherence and its distribution of N-partite GHZ and W states of bosonic fields in the noninertial frames with arbitrary number of acceleration observers. We find that the coherence of both GHZ and W state reduces with accelerations and freezes in the limit of infinite accelerations. The freezing value of coherence depends on the number of accelerated observers. The coherence of N-partite GHZ state is genuinely global and no coherence exists in any subsystems. For the N-partite W state, however, the coherence is essentially bipartite types, and the total coherence is equal to the sum of coherence of all the bipartite subsystems.
Let the Quantum Creep In: Designing Quantum Neural Network Models by Gradually Swapping Out Classical Components
Artificial Intelligence (AI), with its multiplier effect and wide applications in multiple areas, could potentially be an important application of quantum computing. Since modern AI systems are often built on neural networks, the design of quantum neural networks becomes a key challenge in integrating quantum computing into AI. To provide a more fine-grained characterisation of the impact of quantum components on the performance of neural networks, we propose a framework where classical neural network layers are gradually replaced by quantum layers that have the same type of input and output while keeping the flow of information between layers unchanged, different from most current research in quantum neural network, which favours an end-to-end quantum model. We start with a simple three-layer classical neural network without any normalisation layers or activation functions, and gradually change the classical layers to the corresponding quantum versions. We conduct numerical experiments on image classification datasets such as the MNIST, FashionMNIST and CIFAR-10 datasets to demonstrate the change of performance brought by the systematic introduction of quantum components. Through this framework, our research sheds new light on the design of future quantum neural network models where it could be more favourable to search for methods and frameworks that harness the advantages from both the classical and quantum worlds.
An Artificial Neuron Implemented on an Actual Quantum Processor
Artificial neural networks are the heart of machine learning algorithms and artificial intelligence protocols. Historically, the simplest implementation of an artificial neuron traces back to the classical Rosenblatt's `perceptron', but its long term practical applications may be hindered by the fast scaling up of computational complexity, especially relevant for the training of multilayered perceptron networks. Here we introduce a quantum information-based algorithm implementing the quantum computer version of a perceptron, which shows exponential advantage in encoding resources over alternative realizations. We experimentally test a few qubits version of this model on an actual small-scale quantum processor, which gives remarkably good answers against the expected results. We show that this quantum model of a perceptron can be used as an elementary nonlinear classifier of simple patterns, as a first step towards practical training of artificial quantum neural networks to be efficiently implemented on near-term quantum processing hardware.
Quantum Convolutional Neural Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification
This paper presents a hybrid quantum-classical machine learning model for classification tasks, integrating a 4-qubit quantum circuit with a classical neural network. The quantum circuit is designed to encode the features of the Iris dataset using angle embedding and entangling gates, thereby capturing complex feature relationships that are difficult for classical models alone. The model, which we term a Quantum Convolutional Neural Network (QCNN), was trained over 20 epochs, achieving a perfect 100% accuracy on the Iris dataset test set on 16 epoch. Our results demonstrate the potential of quantum-enhanced models in supervised learning tasks, particularly in efficiently encoding and processing data using quantum resources. We detail the quantum circuit design, parameterized gate selection, and the integration of the quantum layer with classical neural network components. This work contributes to the growing body of research on hybrid quantum-classical models and their applicability to real-world datasets.
Out of equilibrium Phase Diagram of the Quantum Random Energy Model
In this paper we study the out-of-equilibrium phase diagram of the quantum version of Derrida's Random Energy Model, which is the simplest model of mean-field spin glasses. We interpret its corresponding quantum dynamics in Fock space as a one-particle problem in very high dimension to which we apply different theoretical methods tailored for high-dimensional lattices: the Forward-Scattering Approximation, a mapping to the Rosenzweig-Porter model, and the cavity method. Our results indicate the existence of two transition lines and three distinct dynamical phases: a completely many-body localized phase at low energy, a fully ergodic phase at high energy, and a multifractal "bad metal" phase at intermediate energy. In the latter, eigenfunctions occupy a diverging volume, yet an exponentially vanishing fraction of the total Hilbert space. We discuss the limitations of our approximations and the relationship with previous studies.
Quantum Measurement and Observable Universe
In this paper, we discuss that an observable-based single-system Copenhagen and entanglement-based two-system von Neumann measurement protocols in quantum theory can be made equivalent by considering the second part of the two-system scheme to be a Dirac-type negative sea filling up the first system. Based on this equivalence, and by considering the universe as a computational process, the choice of the apparatus state in the two-system protocol can be identified with the choice of the observable in the single-system scheme as negative sea filling up the observable universe. In particular, the measuring party's state is considered to be evolving backwards in time to the big bang as a nondeterministic computational process, which chooses the acceptable path as a time-reversal process of irreversible computation. The suggested model proposes that the prepared microstate of the universe, or reality, corresponds to the observer's choice, therefore, subjective reality. Thus, this effectively provides a specific description of the subjective universe model previously proposed, which is based on the symmetry breakdown between the Schrodinger and the Heisenberg pictures of quantum theory.
Improved FRQI on superconducting processors and its restrictions in the NISQ era
In image processing, the amount of data to be processed grows rapidly, in particular when imaging methods yield images of more than two dimensions or time series of images. Thus, efficient processing is a challenge, as data sizes may push even supercomputers to their limits. Quantum image processing promises to encode images with logarithmically less qubits than classical pixels in the image. In theory, this is a huge progress, but so far not many experiments have been conducted in practice, in particular on real backends. Often, the precise conversion of classical data to quantum states, the exact implementation, and the interpretation of the measurements in the classical context are challenging. We investigate these practical questions in this paper. In particular, we study the feasibility of the Flexible Representation of Quantum Images (FRQI). Furthermore, we check experimentally what is the limit in the current noisy intermediate-scale quantum era, i.e. up to which image size an image can be encoded, both on simulators and on real backends. Finally, we propose a method for simplifying the circuits needed for the FRQI. With our alteration, the number of gates needed, especially of the error-prone controlled-NOT gates, can be reduced. As a consequence, the size of manageable images increases.
The power of quantum neural networks
Fault-tolerant quantum computers offer the promise of dramatically improving machine learning through speed-ups in computation or improved model scalability. In the near-term, however, the benefits of quantum machine learning are not so clear. Understanding expressibility and trainability of quantum models-and quantum neural networks in particular-requires further investigation. In this work, we use tools from information geometry to define a notion of expressibility for quantum and classical models. The effective dimension, which depends on the Fisher information, is used to prove a novel generalisation bound and establish a robust measure of expressibility. We show that quantum neural networks are able to achieve a significantly better effective dimension than comparable classical neural networks. To then assess the trainability of quantum models, we connect the Fisher information spectrum to barren plateaus, the problem of vanishing gradients. Importantly, certain quantum neural networks can show resilience to this phenomenon and train faster than classical models due to their favourable optimisation landscapes, captured by a more evenly spread Fisher information spectrum. Our work is the first to demonstrate that well-designed quantum neural networks offer an advantage over classical neural networks through a higher effective dimension and faster training ability, which we verify on real quantum hardware.
NetSquid, a NETwork Simulator for QUantum Information using Discrete events
In order to bring quantum networks into the real world, we would like to determine the requirements of quantum network protocols including the underlying quantum hardware. Because detailed architecture proposals are generally too complex for mathematical analysis, it is natural to employ numerical simulation. Here we introduce NetSquid, the NETwork Simulator for QUantum Information using Discrete events, a discrete-event based platform for simulating all aspects of quantum networks and modular quantum computing systems, ranging from the physical layer and its control plane up to the application level. We study several use cases to showcase NetSquid's power, including detailed physical layer simulations of repeater chains based on nitrogen vacancy centres in diamond as well as atomic ensembles. We also study the control plane of a quantum switch beyond its analytically known regime, and showcase NetSquid's ability to investigate large networks by simulating entanglement distribution over a chain of up to one thousand nodes.
Deep-Q Learning with Hybrid Quantum Neural Network on Solving Maze Problems
Quantum computing holds great potential for advancing the limitations of machine learning algorithms to handle higher dimensions of data and reduce overall training parameters in deep learning (DL) models. This study uses a trainable variational quantum circuit (VQC) on a gate-based quantum computing model to investigate the potential for quantum benefit in a model-free reinforcement learning problem. Through a comprehensive investigation and evaluation of the current model and capabilities of quantum computers, we designed and trained a novel hybrid quantum neural network based on the latest Qiskit and PyTorch framework. We compared its performance with a full-classical CNN with and without an incorporated VQC. Our research provides insights into the potential of deep quantum learning to solve a maze problem and, potentially, other reinforcement learning problems. We conclude that reinforcement learning problems can be practical with reasonable training epochs. Moreover, a comparative study of full-classical and hybrid quantum neural networks is discussed to understand these two approaches' performance, advantages, and disadvantages to deep-Q learning problems, especially on larger-scale maze problems larger than 4x4.
Fusion-based quantum computation
We introduce fusion-based quantum computing (FBQC) - a model of universal quantum computation in which entangling measurements, called fusions, are performed on the qubits of small constant-sized entangled resource states. We introduce a stabilizer formalism for analyzing fault tolerance and computation in these schemes. This framework naturally captures the error structure that arises in certain physical systems for quantum computing, such as photonics. FBQC can offer significant architectural simplifications, enabling hardware made up of many identical modules, requiring an extremely low depth of operations on each physical qubit and reducing classical processing requirements. We present two pedagogical examples of fault-tolerant schemes constructed in this framework and numerically evaluate their threshold under a hardware agnostic fusion error model including both erasure and Pauli error. We also study an error model of linear optical quantum computing with probabilistic fusion and photon loss. In FBQC the non-determinism of fusion is directly dealt with by the quantum error correction protocol, along with other errors. We find that tailoring the fault-tolerance framework to the physical system allows the scheme to have a higher threshold than schemes reported in literature. We present a ballistic scheme which can tolerate a 10.4% probability of suffering photon loss in each fusion.
Optimal fidelity in implementing Grover's search algorithm on open quantum system
We investigate the fidelity of Grover's search algorithm by implementing it on an open quantum system. In particular, we study with what accuracy one can estimate that the algorithm would deliver the searched state. In reality, every system has some influence of its environment. We include the environmental effects on the system dynamics by using a recently reported fluctuation-regulated quantum master equation (FRQME). The FRQME indicates that in addition to the regular relaxation due to system-environment coupling, the applied drive also causes dissipation in the system dynamics. As a result, the fidelity is found to depend on both the drive-induced dissipative terms and the relaxation terms and we find that there exists a competition between them, leading to an optimum value of the drive amplitude for which the fidelity becomes maximum. For efficient implementation of the search algorithm, precise knowledge of this optimum drive amplitude is essential.
Ground State Preparation via Dynamical Cooling
Quantum algorithms for probing ground-state properties of quantum systems require good initial states. Projection-based methods such as eigenvalue filtering rely on inputs that have a significant overlap with the low-energy subspace, which can be challenging for large, strongly-correlated systems. This issue has motivated the study of physically-inspired dynamical approaches such as thermodynamic cooling. In this work, we introduce a ground-state preparation algorithm based on the simulation of quantum dynamics. Our main insight is to transform the Hamiltonian by a shifted sign function via quantum signal processing, effectively mapping eigenvalues into positive and negative subspaces separated by a large gap. This automatically ensures that all states within each subspace conserve energy with respect to the transformed Hamiltonian. Subsequent time-evolution with a perturbed Hamiltonian induces transitions to lower-energy states while preventing unwanted jumps to higher energy states. The approach does not rely on a priori knowledge of energy gaps and requires no additional qubits to model a bath. Furthermore, it makes mathcal{O}(d^{,3/2}/epsilon) queries to the time-evolution operator of the system and mathcal{O}(d^{,3/2}) queries to a block-encoding of the perturbation, for d cooling steps and an epsilon-accurate energy resolution. Our results provide a framework for combining quantum signal processing and Hamiltonian simulation to design heuristic quantum algorithms for ground-state preparation.
Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer
Photonics is the platform of choice to build a modular, easy-to-network quantum computer operating at room temperature. However, no concrete architecture has been presented so far that exploits both the advantages of qubits encoded into states of light and the modern tools for their generation. Here we propose such a design for a scalable and fault-tolerant photonic quantum computer informed by the latest developments in theory and technology. Central to our architecture is the generation and manipulation of three-dimensional hybrid resource states comprising both bosonic qubits and squeezed vacuum states. The proposal enables exploiting state-of-the-art procedures for the non-deterministic generation of bosonic qubits combined with the strengths of continuous-variable quantum computation, namely the implementation of Clifford gates using easy-to-generate squeezed states. Moreover, the architecture is based on two-dimensional integrated photonic chips used to produce a qubit cluster state in one temporal and two spatial dimensions. By reducing the experimental challenges as compared to existing architectures and by enabling room-temperature quantum computation, our design opens the door to scalable fabrication and operation, which may allow photonics to leap-frog other platforms on the path to a quantum computer with millions of qubits.
Data centers with quantum random access memory and quantum networks
In this paper, we propose the Quantum Data Center (QDC), an architecture combining Quantum Random Access Memory (QRAM) and quantum networks. We give a precise definition of QDC, and discuss its possible realizations and extensions. We discuss applications of QDC in quantum computation, quantum communication, and quantum sensing, with a primary focus on QDC for T-gate resources, QDC for multi-party private quantum communication, and QDC for distributed sensing through data compression. We show that QDC will provide efficient, private, and fast services as a future version of data centers.
ANTN: Bridging Autoregressive Neural Networks and Tensor Networks for Quantum Many-Body Simulation
Quantum many-body physics simulation has important impacts on understanding fundamental science and has applications to quantum materials design and quantum technology. However, due to the exponentially growing size of the Hilbert space with respect to the particle number, a direct simulation is intractable. While representing quantum states with tensor networks and neural networks are the two state-of-the-art methods for approximate simulations, each has its own limitations in terms of expressivity and inductive bias. To address these challenges, we develop a novel architecture, Autoregressive Neural TensorNet (ANTN), which bridges tensor networks and autoregressive neural networks. We show that Autoregressive Neural TensorNet parameterizes normalized wavefunctions, allows for exact sampling, generalizes the expressivity of tensor networks and autoregressive neural networks, and inherits a variety of symmetries from autoregressive neural networks. We demonstrate our approach on quantum state learning as well as finding the ground state of the challenging 2D J_1-J_2 Heisenberg model with different systems sizes and coupling parameters, outperforming both tensor networks and autoregressive neural networks. Our work opens up new opportunities for scientific simulations of quantum many-body physics and quantum technology.
Is quantum computing green? An estimate for an energy-efficiency quantum advantage
The quantum advantage threshold determines when a quantum processing unit (QPU) is more efficient with respect to classical computing hardware in terms of algorithmic complexity. The "green" quantum advantage threshold - based on a comparison of energetic efficiency between the two - is going to play a fundamental role in the comparison between quantum and classical hardware. Indeed, its characterization would enable better decisions on energy-saving strategies, e.g. for distributing the workload in hybrid quantum-classical algorithms. Here, we show that the green quantum advantage threshold crucially depends on (i) the quality of the experimental quantum gates and (ii) the entanglement generated in the QPU. Indeed, for NISQ hardware and algorithms requiring a moderate amount of entanglement, a classical tensor network emulation can be more energy-efficient at equal final state fidelity than quantum computation. We compute the green quantum advantage threshold for a few paradigmatic examples in terms of algorithms and hardware platforms, and identify algorithms with a power-law decay of singular values of bipartitions - with power-law exponent alpha lesssim 1 - as the green quantum advantage threshold in the near future.
Path-Integral Approach to Quantum Acoustics
A path-integral approach to quantum acoustics is developed here. In contrast to the commonly utilized particle perspective, this emerging field brings forth a long neglected but essential wave paradigm for lattice vibrations. Within the coherent state picture, we formulate a non-Markovian, stochastic master equation that captures the exact dynamics of any system with coupling linear in the bath coordinates and nonlinear in the system coordinates. We further demonstrate the capability of the presented master equation by applying the corresponding procedure to the eminent Fr\"ohlich model. In general, we establish a solid foundation for quantum acoustics as a kindred framework to quantum optics, while paving the way for deeper first-principle explorations of non-perturbative system dynamics driven by lattice vibrations.
Modeling stochastic eye tracking data: A comparison of quantum generative adversarial networks and Markov models
We explore the use of quantum generative adversarial networks QGANs for modeling eye movement velocity data. We assess whether the advanced computational capabilities of QGANs can enhance the modeling of complex stochastic distribution beyond the traditional mathematical models, particularly the Markov model. The findings indicate that while QGANs demonstrate potential in approximating complex distributions, the Markov model consistently outperforms in accurately replicating the real data distribution. This comparison underlines the challenges and avenues for refinement in time series data generation using quantum computing techniques. It emphasizes the need for further optimization of quantum models to better align with real-world data characteristics.
The Virtual Quantum Optics Laboratory
We present a web-based software tool, the Virtual Quantum Optics Laboratory (VQOL), that may be used for designing and executing realistic simulations of quantum optics experiments. A graphical user interface allows one to rapidly build and configure a variety of different optical experiments, while the runtime environment provides unique capabilities for visualization and analysis. All standard linear optical components are available as well as sources of thermal, coherent, and entangled Gaussian states. A unique aspect of VQOL is the introduction of non-Gaussian measurements using detectors modeled as deterministic devices that "click" when the amplitude of the light falls above a given threshold. We describe the underlying theoretical models and provide several illustrative examples. We find that VQOL provides a a faithful representation of many experimental quantum optics phenomena and may serve as both a useful instructional tool for students as well as a valuable research tool for practitioners.
Error Correction of Quantum Algorithms: Arbitrarily Accurate Recovery Of Noisy Quantum Signal Processing
The intrinsic probabilistic nature of quantum systems makes error correction or mitigation indispensable for quantum computation. While current error-correcting strategies focus on correcting errors in quantum states or quantum gates, these fine-grained error-correction methods can incur significant overhead for quantum algorithms of increasing complexity. We present a first step in achieving error correction at the level of quantum algorithms by combining a unified perspective on modern quantum algorithms via quantum signal processing (QSP). An error model of under- or over-rotation of the signal processing operator parameterized by epsilon < 1 is introduced. It is shown that while Pauli Z-errors are not recoverable without additional resources, Pauli X and Y errors can be arbitrarily suppressed by coherently appending a noisy `recovery QSP.' Furthermore, it is found that a recovery QSP of length O(2^k c^{k^2} d) is sufficient to correct any length-d QSP with c unique phases to k^{th}-order in error epsilon. Allowing an additional assumption, a lower bound of Omega(cd) is shown, which is tight for k = 1, on the length of the recovery sequence. Our algorithmic-level error correction method is applied to Grover's fixed-point search algorithm as a demonstration.
PauliComposer: Compute Tensor Products of Pauli Matrices Efficiently
We introduce a simple algorithm that efficiently computes tensor products of Pauli matrices. This is done by tailoring the calculations to this specific case, which allows to avoid unnecessary calculations. The strength of this strategy is benchmarked against state-of-the-art techniques, showing a remarkable acceleration. As a side product, we provide an optimized method for one key calculus in quantum simulations: the Pauli basis decomposition of Hamiltonians.
Quantum-Enhanced Conformal Methods for Multi-Output Uncertainty: A Holistic Exploration and Experimental Analysis
In this paper, we propose a unified approach to harness quantum conformal methods for multi-output distributions, with a particular emphasis on two experimental paradigms: (i) a standard 2-qubit circuit scenario producing a four-dimensional outcome distribution, and (ii) a multi-basis measurement setting that concatenates measurement probabilities in different bases (Z, X, Y) into a twelve-dimensional output space. By combining a multioutput regression model (e.g., random forests) with distributional conformal prediction, we validate coverage and interval-set sizes on both simulated quantum data and multi-basis measurement data. Our results confirm that classical conformal prediction can effectively provide coverage guarantees even when the target probabilities derive from inherently quantum processes. Such synergy opens the door to next-generation quantum-classical hybrid frameworks, providing both improved interpretability and rigorous coverage for quantum machine learning tasks. All codes and full reproducible Colab notebooks are made available at https://github.com/detasar/QECMMOU.
Probing Off-diagonal Eigenstate Thermalization with Tensor Networks
Energy filter methods in combination with quantum simulation can efficiently access the properties of quantum many-body systems at finite energy densities [Lu et al. PRX Quantum 2, 020321 (2021)]. Classically simulating this algorithm with tensor networks can be used to investigate the microcanonical properties of large spin chains, as recently shown in [Yang et al. Phys. Rev. B 106, 024307 (2022)]. Here we extend this strategy to explore the properties of off-diagonal matrix elements of observables in the energy eigenbasis, fundamentally connected to the thermalization behavior and the eigenstate thermalization hypothesis. We test the method on integrable and non-integrable spin chains of up to 60 sites, much larger than accessible with exact diagonalization. Our results allow us to explore the scaling of the off-diagonal functions with the size and energy difference, and to establish quantitative differences between integrable and non-integrable cases.
Less Quantum, More Advantage: An End-to-End Quantum Algorithm for the Jones Polynomial
We present an end-to-end reconfigurable algorithmic pipeline for solving a famous problem in knot theory using a noisy digital quantum computer, namely computing the value of the Jones polynomial at the fifth root of unity within additive error for any input link, i.e. a closed braid. This problem is DQC1-complete for Markov-closed braids and BQP-complete for Plat-closed braids, and we accommodate both versions of the problem. Even though it is widely believed that DQC1 is strictly contained in BQP, and so is 'less quantum', the resource requirements of classical algorithms for the DQC1 version are at least as high as for the BQP version, and so we potentially gain 'more advantage' by focusing on Markov-closed braids in our exposition. We demonstrate our quantum algorithm on Quantinuum's H2-2 quantum computer and show the effect of problem-tailored error-mitigation techniques. Further, leveraging that the Jones polynomial is a link invariant, we construct an efficiently verifiable benchmark to characterise the effect of noise present in a given quantum processor. In parallel, we implement and benchmark the state-of-the-art tensor-network-based classical algorithms for computing the Jones polynomial. The practical tools provided in this work allow for precise resource estimation to identify near-term quantum advantage for a meaningful quantum-native problem in knot theory.
Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing
A large amount of effort has recently been put into understanding the barren plateau phenomenon. In this perspective article, we face the increasingly loud elephant in the room and ask a question that has been hinted at by many but not explicitly addressed: Can the structure that allows one to avoid barren plateaus also be leveraged to efficiently simulate the loss classically? We present strong evidence that commonly used models with provable absence of barren plateaus are also classically simulable, provided that one can collect some classical data from quantum devices during an initial data acquisition phase. This follows from the observation that barren plateaus result from a curse of dimensionality, and that current approaches for solving them end up encoding the problem into some small, classically simulable, subspaces. Thus, while stressing quantum computers can be essential for collecting data, our analysis sheds serious doubt on the non-classicality of the information processing capabilities of parametrized quantum circuits for barren plateau-free landscapes. We end by discussing caveats in our arguments, the role of smart initializations and the possibility of provably superpolynomial, or simply practical, advantages from running parametrized quantum circuits.
Physics-Informed Neural Networks for One-Dimensional Quantum Well Problems
We implement physics-informed neural networks (PINNs) to solve the time-independent Schr\"odinger equation for three canonical one-dimensional quantum potentials: an infinite square well, a finite square well, and a finite barrier. The PINN models incorporate trial wavefunctions that exactly satisfy boundary conditions (Dirichlet zeros at domain boundaries), and they optimize a loss functional combining the PDE residual with a normalization constraint. For the infinite well, the ground-state energy is known (E = pi^2 in dimensionless units) and held fixed in training, whereas for the finite well and barrier, the eigenenergy is treated as a trainable parameter. We use fully-connected neural networks with smooth activation functions to represent the wavefunction and demonstrate that PINNs can learn the ground-state eigenfunctions and eigenvalues for these quantum systems. The results show that the PINN-predicted wavefunctions closely match analytical solutions or expected behaviors, and the learned eigenenergies converge to known values. We present training logs and convergence of the energy parameter, as well as figures comparing the PINN solutions to exact results. The discussion addresses the performance of PINNs relative to traditional numerical methods, highlighting challenges such as convergence to the correct eigenvalue, sensitivity to initialization, and the difficulty of modeling discontinuous potentials. We also discuss the importance of the normalization term to resolve the scaling ambiguity of the wavefunction. Finally, we conclude that PINNs are a viable approach for quantum eigenvalue problems, and we outline future directions including extensions to higher-dimensional and time-dependent Schr\"odinger equations.
Are queries and keys always relevant? A case study on Transformer wave functions
The dot product attention mechanism, originally designed for natural language processing tasks, is a cornerstone of modern Transformers. It adeptly captures semantic relationships between word pairs in sentences by computing a similarity overlap between queries and keys. In this work, we explore the suitability of Transformers, focusing on their attention mechanisms, in the specific domain of the parametrization of variational wave functions to approximate ground states of quantum many-body spin Hamiltonians. Specifically, we perform numerical simulations on the two-dimensional J_1-J_2 Heisenberg model, a common benchmark in the field of quantum many-body systems on lattice. By comparing the performance of standard attention mechanisms with a simplified version that excludes queries and keys, relying solely on positions, we achieve competitive results while reducing computational cost and parameter usage. Furthermore, through the analysis of the attention maps generated by standard attention mechanisms, we show that the attention weights become effectively input-independent at the end of the optimization. We support the numerical results with analytical calculations, providing physical insights of why queries and keys should be, in principle, omitted from the attention mechanism when studying large systems.
Quantum Policy Iteration via Amplitude Estimation and Grover Search -- Towards Quantum Advantage for Reinforcement Learning
We present a full implementation and simulation of a novel quantum reinforcement learning method. Our work is a detailed and formal proof of concept for how quantum algorithms can be used to solve reinforcement learning problems and shows that, given access to error-free, efficient quantum realizations of the agent and environment, quantum methods can yield provable improvements over classical Monte-Carlo based methods in terms of sample complexity. Our approach shows in detail how to combine amplitude estimation and Grover search into a policy evaluation and improvement scheme. We first develop quantum policy evaluation (QPE) which is quadratically more efficient compared to an analogous classical Monte Carlo estimation and is based on a quantum mechanical realization of a finite Markov decision process (MDP). Building on QPE, we derive a quantum policy iteration that repeatedly improves an initial policy using Grover search until the optimum is reached. Finally, we present an implementation of our algorithm for a two-armed bandit MDP which we then simulate.
Preparing random state for quantum financing with quantum walks
In recent years, there has been an emerging trend of combining two innovations in computer science and physics to achieve better computation capability. Exploring the potential of quantum computation to achieve highly efficient performance in various tasks is a vital development in engineering and a valuable question in sciences, as it has a significant potential to provide exponential speedups for technologically complex problems that are specifically advantageous to quantum computers. However, one key issue in unleashing this potential is constructing an efficient approach to load classical data into quantum states that can be executed by quantum computers or quantum simulators on classical hardware. Therefore, the split-step quantum walks (SSQW) algorithm was proposed to address this limitation. We facilitate SSQW to design parameterized quantum circuits (PQC) that can generate probability distributions and optimize the parameters to achieve the desired distribution using a variational solver. A practical example of implementing SSQW using Qiskit has been released as open-source software. Showing its potential as a promising method for generating desired probability amplitude distributions highlights the potential application of SSQW in option pricing through quantum simulation.
Programmable Heisenberg interactions between Floquet qubits
The fundamental trade-off between robustness and tunability is a central challenge in the pursuit of quantum simulation and fault-tolerant quantum computation. In particular, many emerging quantum architectures are designed to achieve high coherence at the expense of having fixed spectra and consequently limited types of controllable interactions. Here, by adiabatically transforming fixed-frequency superconducting circuits into modifiable Floquet qubits, we demonstrate an XXZ Heisenberg interaction with fully adjustable anisotropy. This interaction model is on one hand the basis for many-body quantum simulation of spin systems, and on the other hand the primitive for an expressive quantum gate set. To illustrate the robustness and versatility of our Floquet protocol, we tailor the Heisenberg Hamiltonian and implement two-qubit iSWAP, CZ, and SWAP gates with estimated fidelities of 99.32(3)%, 99.72(2)%, and 98.93(5)%, respectively. In addition, we implement a Heisenberg interaction between higher energy levels and employ it to construct a three-qubit CCZ gate with a fidelity of 96.18(5)%. Importantly, the protocol is applicable to various fixed-frequency high-coherence platforms, thereby unlocking a suite of essential interactions for high-performance quantum information processing. From a broader perspective, our work provides compelling avenues for future exploration of quantum electrodynamics and optimal control using the Floquet framework.
Predicting Many Properties of a Quantum System from Very Few Measurements
Predicting properties of complex, large-scale quantum systems is essential for developing quantum technologies. We present an efficient method for constructing an approximate classical description of a quantum state using very few measurements of the state. This description, called a classical shadow, can be used to predict many different properties: order log M measurements suffice to accurately predict M different functions of the state with high success probability. The number of measurements is independent of the system size, and saturates information-theoretic lower bounds. Moreover, target properties to predict can be selected after the measurements are completed. We support our theoretical findings with extensive numerical experiments. We apply classical shadows to predict quantum fidelities, entanglement entropies, two-point correlation functions, expectation values of local observables, and the energy variance of many-body local Hamiltonians. The numerical results highlight the advantages of classical shadows relative to previously known methods.
Review of Distributed Quantum Computing. From single QPU to High Performance Quantum Computing
The emerging field of quantum computing has shown it might change how we process information by using the unique principles of quantum mechanics. As researchers continue to push the boundaries of quantum technologies to unprecedented levels, distributed quantum computing raises as an obvious path to explore with the aim of boosting the computational power of current quantum systems. This paper presents a comprehensive survey of the current state of the art in the distributed quantum computing field, exploring its foundational principles, landscape of achievements, challenges, and promising directions for further research. From quantum communication protocols to entanglement-based distributed algorithms, each aspect contributes to the mosaic of distributed quantum computing, making it an attractive approach to address the limitations of classical computing. Our objective is to provide an exhaustive overview for experienced researchers and field newcomers.
Bridging Theory and Practice in Quantum Game Theory: Optimized Implementation of the Battle of the Sexes with Error Mitigation on NISQ Hardware
Implementing quantum game theory on real hardware is challenging due to noise, decoherence, and limited qubit connectivity, yet such demonstrations are essential to validate theoretical predictions. We present one of the first full experimental realizations of the Battle of the Sexes game under the Eisert-Wilkens-Lewenstein (EWL) framework on IBM Quantum's ibm sherbrooke superconducting processor. Four quantum strategies (I, H, R(pi/4), R(pi)) were evaluated across 31 entanglement values gamma in [0, pi] using 2048 shots per configuration, enabling a direct comparison between analytical predictions and hardware execution. To mitigate noise and variability, we introduce a Guided Circuit Mapping (GCM) method that dynamically selects qubit pairs and optimizes routing based on real-time topology and calibration data. The analytical model forecasts up to 108% payoff improvement over the classical equilibrium, and despite hardware-induced deviations, experimental results with GCM preserve the expected payoff trends within 3.5%-12% relative error. These findings show that quantum advantages in strategic coordination can persist under realistic NISQ conditions, providing a pathway toward practical applications of quantum game theory in multi-agent, economic, and distributed decision-making systems.
Understanding quantum machine learning also requires rethinking generalization
Quantum machine learning models have shown successful generalization performance even when trained with few data. In this work, through systematic randomization experiments, we show that traditional approaches to understanding generalization fail to explain the behavior of such quantum models. Our experiments reveal that state-of-the-art quantum neural networks accurately fit random states and random labeling of training data. This ability to memorize random data defies current notions of small generalization error, problematizing approaches that build on complexity measures such as the VC dimension, the Rademacher complexity, and all their uniform relatives. We complement our empirical results with a theoretical construction showing that quantum neural networks can fit arbitrary labels to quantum states, hinting at their memorization ability. Our results do not preclude the possibility of good generalization with few training data but rather rule out any possible guarantees based only on the properties of the model family. These findings expose a fundamental challenge in the conventional understanding of generalization in quantum machine learning and highlight the need for a paradigm shift in the design of quantum models for machine learning tasks.
A Grand Unification of Quantum Algorithms
Quantum algorithms offer significant speedups over their classical counterparts for a variety of problems. The strongest arguments for this advantage are borne by algorithms for quantum search, quantum phase estimation, and Hamiltonian simulation, which appear as subroutines for large families of composite quantum algorithms. A number of these quantum algorithms were recently tied together by a novel technique known as the quantum singular value transformation (QSVT), which enables one to perform a polynomial transformation of the singular values of a linear operator embedded in a unitary matrix. In the seminal GSLW'19 paper on QSVT [Gily\'en, Su, Low, and Wiebe, ACM STOC 2019], many algorithms are encompassed, including amplitude amplification, methods for the quantum linear systems problem, and quantum simulation. Here, we provide a pedagogical tutorial through these developments, first illustrating how quantum signal processing may be generalized to the quantum eigenvalue transform, from which QSVT naturally emerges. Paralleling GSLW'19, we then employ QSVT to construct intuitive quantum algorithms for search, phase estimation, and Hamiltonian simulation, and also showcase algorithms for the eigenvalue threshold problem and matrix inversion. This overview illustrates how QSVT is a single framework comprising the three major quantum algorithms, thus suggesting a grand unification of quantum algorithms.
Efficient Quantum Algorithms for Quantum Optimal Control
In this paper, we present efficient quantum algorithms that are exponentially faster than classical algorithms for solving the quantum optimal control problem. This problem involves finding the control variable that maximizes a physical quantity at time T, where the system is governed by a time-dependent Schr\"odinger equation. This type of control problem also has an intricate relation with machine learning. Our algorithms are based on a time-dependent Hamiltonian simulation method and a fast gradient-estimation algorithm. We also provide a comprehensive error analysis to quantify the total error from various steps, such as the finite-dimensional representation of the control function, the discretization of the Schr\"odinger equation, the numerical quadrature, and optimization. Our quantum algorithms require fault-tolerant quantum computers.
Single-shot Quantum Signal Processing Interferometry
Quantum systems of infinite dimension, such as bosonic oscillators, provide vast resources for quantum sensing. Yet, a general theory on how to manipulate such bosonic modes for sensing beyond parameter estimation is unknown. We present a general algorithmic framework, quantum signal processing interferometry (QSPI), for quantum sensing at the fundamental limits of quantum mechanics by generalizing Ramsey-type interferometry. Our QSPI sensing protocol relies on performing nonlinear polynomial transformations on the oscillator's quadrature operators by generalizing quantum signal processing (QSP) from qubits to hybrid qubit-oscillator systems. We use our QSPI sensing framework to make efficient binary decisions on a displacement channel in the single-shot limit. Theoretical analysis suggests the sensing accuracy, given a single-shot qubit measurement, scales inversely with the sensing time or circuit depth of the algorithm. We further concatenate a series of such binary decisions to perform parameter estimation in a bit-by-bit fashion. Numerical simulations are performed to support these statements. Our QSPI protocol offers a unified framework for quantum sensing using continuous-variable bosonic systems beyond parameter estimation and establishes a promising avenue toward efficient and scalable quantum control and quantum sensing schemes beyond the NISQ era.
Quixer: A Quantum Transformer Model
Progress in the realisation of reliable large-scale quantum computers has motivated research into the design of quantum machine learning models. We present Quixer: a novel quantum transformer model which utilises the Linear Combination of Unitaries and Quantum Singular Value Transform primitives as building blocks. Quixer operates by preparing a superposition of tokens and applying a trainable non-linear transformation to this mix. We present the first results for a quantum transformer model applied to a practical language modelling task, obtaining results competitive with an equivalent classical baseline. In addition, we include resource estimates for evaluating the model on quantum hardware, and provide an open-source implementation for classical simulation. We conclude by highlighting the generality of Quixer, showing that its parameterised components can be substituted with fixed structures to yield new classes of quantum transformers.
Entanglement Purification in Quantum Networks: Guaranteed Improvement and Optimal Time
While the concept of entanglement purification protocols (EPPs) is straightforward, the integration of EPPs in network architectures requires careful performance evaluations and optimizations that take into account realistic conditions and imperfections, especially probabilistic entanglement generation and quantum memory decoherence. It is important to understand what is guaranteed to be improved from successful EPP with arbitrary non-identical input, which determines whether we want to perform the EPP at all. When successful EPP can offer improvement, the time to perform the EPP should also be optimized to maximize the improvement. In this work, we study the guaranteed improvement and optimal time for the CNOT-based recurrence EPP, previously shown to be optimal in various scenarios. We firstly prove guaranteed improvement for multiple figures of merit, including fidelity and several entanglement measures when compared to practical baselines as functions of input states. However, it is noteworthy that the guaranteed improvement we prove does not imply the universality of the EPP as introduced in arXiv:2407.21760. Then we prove robust, parameter-independent optimal time for typical error models and figures of merit. We further explore memory decoherence described by continuous-time Pauli channels, and demonstrate the phenomenon of optimal time transition when the memory decoherence error pattern changes. Our work deepens the understanding of EPP performance in realistic scenarios and offers insights into optimizing quantum networks that integrate EPPs.
Generalized thermalization for integrable system under quantum quench
We investigate equilibration and generalized thermalization of the quantum Harmonic chain under local quantum quench. The quench action we consider is connecting two disjoint harmonic chains of different sizes and the system jumps between two integrable settings. We verify the validity of the Generalized Gibbs Ensemble description for this infinite dimensional Hilbert space system and also identify equilibration between the subsystems as in classical systems. Using Bogoliubov transformations, we show that the eigenstates of the system prior to the quench evolve towards the Gibbs Generalized Ensemble description. Eigenstates that are more delocalized (in the sense of inverse participation ratio) prior to the quench, tend to equilibrate more rapidly. Further, through the phase space properties of a Generalized Gibbs Ensemble and the strength of stimulated emission, we identify the necessary criterion on the initial states for such relaxation at late times and also find out the states which would potentially not be described by the Gibbs Generalized Ensemble description.
Understanding Quantum Technologies 2025
Understanding Quantum Technologies 2025 is the 8th update of a free open science ebook that provides a 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections, quantum computing energetics and a new subsection of the effects of the Lieb-Robinson limit), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors scientific and engineering approaches and roadmaps), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs and manufacturing process, raw materials), unconventional computing (potential alternatives to quantum and classical computing), quantum computing algorithms, software development tools, resource estimate and benchmark tools, use case and case studies analysis methodologies, application use cases per market, quantum communications and cryptography (including QKD, PQC and QPU interconnect technologies), quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an update to the 2024, 2023, 2022, and 2021 editions published respectively in October 2024, 2023, 2022 and 2021. An update log is provided at the end of the book.
Machine Learning in the Quantum Age: Quantum vs. Classical Support Vector Machines
This work endeavors to juxtapose the efficacy of machine learning algorithms within classical and quantum computational paradigms. Particularly, by emphasizing on Support Vector Machines (SVM), we scrutinize the classification prowess of classical SVM and Quantum Support Vector Machines (QSVM) operational on quantum hardware over the Iris dataset. The methodology embraced encapsulates an extensive array of experiments orchestrated through the Qiskit library, alongside hyperparameter optimization. The findings unveil that in particular scenarios, QSVMs extend a level of accuracy that can vie with classical SVMs, albeit the execution times are presently protracted. Moreover, we underscore that augmenting quantum computational capacity and the magnitude of parallelism can markedly ameliorate the performance of quantum machine learning algorithms. This inquiry furnishes invaluable insights regarding the extant scenario and future potentiality of machine learning applications in the quantum epoch. Colab: https://t.ly/QKuz0
Quantum classical hybrid neural networks for continuous variable prediction
Within this decade, quantum computers are predicted to outperform conventional computers in terms of processing power and have a disruptive effect on a variety of business sectors. It is predicted that the financial sector would be one of the first to benefit from quantum computing both in the short and long terms. In this research work we use Hybrid Quantum Neural networks to present a quantum machine learning approach for Continuous variable prediction.
Surface codes: Towards practical large-scale quantum computation
This article provides an introduction to surface code quantum computing. We first estimate the size and speed of a surface code quantum computer. We then introduce the concept of the stabilizer, using two qubits, and extend this concept to stabilizers acting on a two-dimensional array of physical qubits, on which we implement the surface code. We next describe how logical qubits are formed in the surface code array and give numerical estimates of their fault-tolerance. We outline how logical qubits are physically moved on the array, how qubit braid transformations are constructed, and how a braid between two logical qubits is equivalent to a controlled-NOT. We then describe the single-qubit Hadamard, S and T operators, completing the set of required gates for a universal quantum computer. We conclude by briefly discussing physical implementations of the surface code. We include a number of appendices in which we provide supplementary information to the main text.
Tutorial: Remote entanglement protocols for stationary qubits with photonic interfaces
Generating entanglement between distant quantum systems is at the core of quantum networking. In recent years, numerous theoretical protocols for remote entanglement generation have been proposed, of which many have been experimentally realized. Here, we provide a modular theoretical framework to elucidate the general mechanisms of photon-mediated entanglement generation between single spins in atomic or solid-state systems. Our framework categorizes existing protocols at various levels of abstraction and allows for combining the elements of different schemes in new ways. These abstraction layers make it possible to readily compare protocols for different quantum hardware. To enable the practical evaluation of protocols tailored to specific experimental parameters, we have devised numerical simulations based on the framework with our codes available online.
Curriculum reinforcement learning for quantum architecture search under hardware errors
The key challenge in the noisy intermediate-scale quantum era is finding useful circuits compatible with current device limitations. Variational quantum algorithms (VQAs) offer a potential solution by fixing the circuit architecture and optimizing individual gate parameters in an external loop. However, parameter optimization can become intractable, and the overall performance of the algorithm depends heavily on the initially chosen circuit architecture. Several quantum architecture search (QAS) algorithms have been developed to design useful circuit architectures automatically. In the case of parameter optimization alone, noise effects have been observed to dramatically influence the performance of the optimizer and final outcomes, which is a key line of study. However, the effects of noise on the architecture search, which could be just as critical, are poorly understood. This work addresses this gap by introducing a curriculum-based reinforcement learning QAS (CRLQAS) algorithm designed to tackle challenges in realistic VQA deployment. The algorithm incorporates (i) a 3D architecture encoding and restrictions on environment dynamics to explore the search space of possible circuits efficiently, (ii) an episode halting scheme to steer the agent to find shorter circuits, and (iii) a novel variant of simultaneous perturbation stochastic approximation as an optimizer for faster convergence. To facilitate studies, we developed an optimized simulator for our algorithm, significantly improving computational efficiency in simulating noisy quantum circuits by employing the Pauli-transfer matrix formalism in the Pauli-Liouville basis. Numerical experiments focusing on quantum chemistry tasks demonstrate that CRLQAS outperforms existing QAS algorithms across several metrics in both noiseless and noisy environments.
Quantum circuit synthesis with diffusion models
Quantum computing has recently emerged as a transformative technology. Yet, its promised advantages rely on efficiently translating quantum operations into viable physical realizations. In this work, we use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation. Leveraging text-conditioning, we steer the model to produce desired quantum operations within gate-based quantum circuits. Notably, DMs allow to sidestep during training the exponential overhead inherent in the classical simulation of quantum dynamics -- a consistent bottleneck in preceding ML techniques. We demonstrate the model's capabilities across two tasks: entanglement generation and unitary compilation. The model excels at generating new circuits and supports typical DM extensions such as masking and editing to, for instance, align the circuit generation to the constraints of the targeted quantum device. Given their flexibility and generalization abilities, we envision DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum computation.
Qiskit Code Assistant: Training LLMs for generating Quantum Computing Code
Code Large Language Models (Code LLMs) have emerged as powerful tools, revolutionizing the software development landscape by automating the coding process and reducing time and effort required to build applications. This paper focuses on training Code LLMs to specialize in the field of quantum computing. We begin by discussing the unique needs of quantum computing programming, which differ significantly from classical programming approaches or languages. A Code LLM specializing in quantum computing requires a foundational understanding of quantum computing and quantum information theory. However, the scarcity of available quantum code examples and the rapidly evolving field, which necessitates continuous dataset updates, present significant challenges. Moreover, we discuss our work on training Code LLMs to produce high-quality quantum code using the Qiskit library. This work includes an examination of the various aspects of the LLMs used for training and the specific training conditions, as well as the results obtained with our current models. To evaluate our models, we have developed a custom benchmark, similar to HumanEval, which includes a set of tests specifically designed for the field of quantum computing programming using Qiskit. Our findings indicate that our model outperforms existing state-of-the-art models in quantum computing tasks. We also provide examples of code suggestions, comparing our model to other relevant code LLMs. Finally, we introduce a discussion on the potential benefits of Code LLMs for quantum computing computational scientists, researchers, and practitioners. We also explore various features and future work that could be relevant in this context.
Gauge Invariant and Anyonic Symmetric Transformer and RNN Quantum States for Quantum Lattice Models
Symmetries such as gauge invariance and anyonic symmetry play a crucial role in quantum many-body physics. We develop a general approach to constructing gauge invariant or anyonic symmetric autoregressive neural network quantum states, including a wide range of architectures such as Transformer and recurrent neural network (RNN), for quantum lattice models. These networks can be efficiently sampled and explicitly obey gauge symmetries or anyonic constraint. We prove that our methods can provide exact representation for the ground and excited states of the 2D and 3D toric codes, and the X-cube fracton model. We variationally optimize our symmetry incorporated autoregressive neural networks for ground states as well as real-time dynamics for a variety of models. We simulate the dynamics and the ground states of the quantum link model of U(1) lattice gauge theory, obtain the phase diagram for the 2D Z_2 gauge theory, determine the phase transition and the central charge of the SU(2)_3 anyonic chain, and also compute the ground state energy of the SU(2) invariant Heisenberg spin chain. Our approach provides powerful tools for exploring condensed matter physics, high energy physics and quantum information science.
Quantum Switch for the Quantum Internet: Noiseless Communications through Noisy Channels
Counter-intuitively, quantum mechanics enables quantum particles to propagate simultaneously among multiple space-time trajectories. Hence, a quantum information carrier can travel through different communication channels in a quantum superposition of different orders, so that the relative time-order of the communication channels becomes indefinite. This is realized by utilizing a quantum device known as quantum switch. In this paper, we investigate, from a communication-engineering perspective, the use of the quantum switch within the quantum teleportation process, one of the key functionalities of the Quantum Internet. Specifically, a theoretical analysis is conducted to quantify the performance gain that can be achieved by employing a quantum switch for the entanglement distribution process within the quantum teleportation with respect to the case of absence of quantum switch. This analysis reveals that, by utilizing the quantum switch, the quantum teleportation is heralded as a noiseless communication process with a probability that, remarkably and counter-intuitively, increases with the noise levels affecting the communication channels considered in the indefinite-order time combination.
Algorithms for the Markov Entropy Decomposition
The Markov entropy decomposition (MED) is a recently-proposed, cluster-based simulation method for finite temperature quantum systems with arbitrary geometry. In this paper, we detail numerical algorithms for performing the required steps of the MED, principally solving a minimization problem with a preconditioned Newton's algorithm, as well as how to extract global susceptibilities and thermal responses. We demonstrate the power of the method with the spin-1/2 XXZ model on the 2D square lattice, including the extraction of critical points and details of each phase. Although the method shares some qualitative similarities with exact-diagonalization, we show the MED is both more accurate and significantly more flexible.
Curvature-Aware Optimization of Noisy Variational Quantum Circuits via Weighted Projective Line Geometry
We develop a differential-geometric framework for variational quantum circuits in which noisy single- and multi-qubit parameter spaces are modeled by weighted projective lines (WPLs). Starting from the pure-state Bloch sphere CP1, we show that realistic hardware noise induces anisotropic contractions of the Bloch ball that can be represented by a pair of physically interpretable parameters (lambda_perp, lambda_parallel). These parameters determine a unique WPL metric g_WPL(a_over_b, b) whose scalar curvature is R = 2 / b^2, yielding a compact and channel-resolved geometric surrogate for the intrinsic information structure of noisy quantum circuits. We develop a tomography-to-geometry pipeline that extracts (lambda_perp, lambda_parallel) from hardware data and maps them to the WPL parameters (a_over_b, b, R). Experiments on IBM Quantum backends show that the resulting WPL geometries accurately capture anisotropic curvature deformation across calibration periods. Finally, we demonstrate that WPL-informed quantum natural gradients (WPL-QNG) provide stable optimization dynamics for noisy variational quantum eigensolvers and enable curvature-aware mitigation of barren plateaus.
Neural auto-designer for enhanced quantum kernels
Quantum kernels hold great promise for offering computational advantages over classical learners, with the effectiveness of these kernels closely tied to the design of the quantum feature map. However, the challenge of designing effective quantum feature maps for real-world datasets, particularly in the absence of sufficient prior information, remains a significant obstacle. In this study, we present a data-driven approach that automates the design of problem-specific quantum feature maps. Our approach leverages feature-selection techniques to handle high-dimensional data on near-term quantum machines with limited qubits, and incorporates a deep neural predictor to efficiently evaluate the performance of various candidate quantum kernels. Through extensive numerical simulations on different datasets, we demonstrate the superiority of our proposal over prior methods, especially for the capability of eliminating the kernel concentration issue and identifying the feature map with prediction advantages. Our work not only unlocks the potential of quantum kernels for enhancing real-world tasks but also highlights the substantial role of deep learning in advancing quantum machine learning.
Coherent shuttle of electron-spin states
We demonstrate a coherent spin shuttle through a GaAs/AlGaAs quadruple-quantum-dot array. Starting with two electrons in a spin-singlet state in the first dot, we shuttle one electron over to either the second, third or fourth dot. We observe that the separated spin-singlet evolves periodically into the m=0 spin-triplet and back before it dephases due to nuclear spin noise. We attribute the time evolution to differences in the local Zeeman splitting between the respective dots. With the help of numerical simulations, we analyse and discuss the visibility of the singlet-triplet oscillations and connect it to the requirements for coherent spin shuttling in terms of the inter-dot tunnel coupling strength and rise time of the pulses. The distribution of entangled spin pairs through tunnel coupled structures may be of great utility for connecting distant qubit registers on a chip.
Minimal evolution times for fast, pulse-based state preparation in silicon spin qubits
Standing as one of the most significant barriers to reaching quantum advantage, state-preparation fidelities on noisy intermediate-scale quantum processors suffer from quantum-gate errors, which accumulate over time. A potential remedy is pulse-based state preparation. We numerically investigate the minimal evolution times (METs) attainable by optimizing (microwave and exchange) pulses on silicon hardware. We investigate two state preparation tasks. First, we consider the preparation of molecular ground states and find the METs for H_2, HeH^+, and LiH to be 2.4 ns, 4.4 ns, and 27.2 ns, respectively. Second, we consider transitions between arbitrary states and find the METs for transitions between arbitrary four-qubit states to be below 50 ns. For comparison, connecting arbitrary two-qubit states via one- and two-qubit gates on the same silicon processor requires approximately 200 ns. This comparison indicates that pulse-based state preparation is likely to utilize the coherence times of silicon hardware more efficiently than gate-based state preparation. Finally, we quantify the effect of silicon device parameters on the MET. We show that increasing the maximal exchange amplitude from 10 MHz to 1 GHz accelerates the METs, e.g., for H_2 from 84.3 ns to 2.4 ns. This demonstrates the importance of fast exchange. We also show that increasing the maximal amplitude of the microwave drive from 884 kHz to 56.6 MHz shortens state transitions, e.g., for two-qubit states from 1000 ns to 25 ns. Our results bound both the state-preparation times for general quantum algorithms and the execution times of variational quantum algorithms with silicon spin qubits.
Quantum Machine Learning in Drug Discovery: Applications in Academia and Pharmaceutical Industries
The nexus of quantum computing and machine learning - quantum machine learning - offers the potential for significant advancements in chemistry. This review specifically explores the potential of quantum neural networks on gate-based quantum computers within the context of drug discovery. We discuss the theoretical foundations of quantum machine learning, including data encoding, variational quantum circuits, and hybrid quantum-classical approaches. Applications to drug discovery are highlighted, including molecular property prediction and molecular generation. We provide a balanced perspective, emphasizing both the potential benefits and the challenges that must be addressed.
Quantum circuit synthesis of Bell and GHZ states using projective simulation in the NISQ era
Quantum Computing has been evolving in the last years. Although nowadays quantum algorithms performance has shown superior to their classical counterparts, quantum decoherence and additional auxiliary qubits needed for error tolerance routines have been huge barriers for quantum algorithms efficient use. These restrictions lead us to search for ways to minimize algorithms costs, i.e the number of quantum logical gates and the depth of the circuit. For this, quantum circuit synthesis and quantum circuit optimization techniques are explored. We studied the viability of using Projective Simulation, a reinforcement learning technique, to tackle the problem of quantum circuit synthesis for noise quantum computers with limited number of qubits. The agent had the task of creating quantum circuits up to 5 qubits to generate GHZ states in the IBM Tenerife (IBM QX4) quantum processor. Our simulations demonstrated that the agent had a good performance but its capacity for learning new circuits decreased as the number of qubits increased.
Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach
We introduce AQCtensor, a novel algorithm to produce short-depth quantum circuits from Matrix Product States (MPS). Our approach is specifically tailored to the preparation of quantum states generated from the time evolution of quantum many-body Hamiltonians. This tailored approach has two clear advantages over previous algorithms that were designed to map a generic MPS to a quantum circuit. First, we optimize all parameters of a parametric circuit at once using Approximate Quantum Compiling (AQC) - this is to be contrasted with other approaches based on locally optimizing a subset of circuit parameters and "sweeping" across the system. We introduce an optimization scheme to avoid the so-called ``orthogonality catastrophe" - i.e. the fact that the fidelity of two arbitrary quantum states decays exponentially with the number of qubits - that would otherwise render a global optimization of the circuit impractical. Second, the depth of our parametric circuit is constant in the number of qubits for a fixed simulation time and fixed error tolerance. This is to be contrasted with the linear circuit Ansatz used in generic algorithms whose depth scales linearly in the number of qubits. For simulation problems on 100 qubits, we show that AQCtensor thus achieves at least an order of magnitude reduction in the depth of the resulting optimized circuit, as compared with the best generic MPS to quantum circuit algorithms. We demonstrate our approach on simulation problems on Heisenberg-like Hamiltonians on up to 100 qubits and find optimized quantum circuits that have significantly reduced depth as compared to standard Trotterized circuits.
Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach
In this research, we explore the integration of quantum computing with classical machine learning for image classification tasks, specifically focusing on the MNIST dataset. We propose a hybrid quantum-classical approach that leverages the strengths of both paradigms. The process begins with preprocessing the MNIST dataset, normalizing the pixel values, and reshaping the images into vectors. An autoencoder compresses these 784-dimensional vectors into a 64-dimensional latent space, effectively reducing the data's dimensionality while preserving essential features. These compressed features are then processed using a quantum circuit implemented on a 5-qubit system. The quantum circuit applies rotation gates based on the feature values, followed by Hadamard and CNOT gates to entangle the qubits, and measurements are taken to generate quantum outcomes. These outcomes serve as input for a classical neural network designed to classify the MNIST digits. The classical neural network comprises multiple dense layers with batch normalization and dropout to enhance generalization and performance. We evaluate the performance of this hybrid model and compare it with a purely classical approach. The experimental results indicate that while the hybrid model demonstrates the feasibility of integrating quantum computing with classical techniques, the accuracy of the final model, trained on quantum outcomes, is currently lower than the classical model trained on compressed features. This research highlights the potential of quantum computing in machine learning, though further optimization and advanced quantum algorithms are necessary to achieve superior performance.
Quantum Long Short-Term Memory
Long short-term memory (LSTM) is a kind of recurrent neural networks (RNN) for sequence and temporal dependency data modeling and its effectiveness has been extensively established. In this work, we propose a hybrid quantum-classical model of LSTM, which we dub QLSTM. We demonstrate that the proposed model successfully learns several kinds of temporal data. In particular, we show that for certain testing cases, this quantum version of LSTM converges faster, or equivalently, reaches a better accuracy, than its classical counterpart. Due to the variational nature of our approach, the requirements on qubit counts and circuit depth are eased, and our work thus paves the way toward implementing machine learning algorithms for sequence modeling on noisy intermediate-scale quantum (NISQ) devices.
Unentangled quantum reinforcement learning agents in the OpenAI Gym
Classical reinforcement learning (RL) has generated excellent results in different regions; however, its sample inefficiency remains a critical issue. In this paper, we provide concrete numerical evidence that the sample efficiency (the speed of convergence) of quantum RL could be better than that of classical RL, and for achieving comparable learning performance, quantum RL could use much (at least one order of magnitude) fewer trainable parameters than classical RL. Specifically, we employ the popular benchmarking environments of RL in the OpenAI Gym, and show that our quantum RL agent converges faster than classical fully-connected neural networks (FCNs) in the tasks of CartPole and Acrobot under the same optimization process. We also successfully train the first quantum RL agent that can complete the task of LunarLander in the OpenAI Gym. Our quantum RL agent only requires a single-qubit-based variational quantum circuit without entangling gates, followed by a classical neural network (NN) to post-process the measurement output. Finally, we could accomplish the aforementioned tasks on the real IBM quantum machines. To the best of our knowledge, none of the earlier quantum RL agents could do that.
Covariant quantum kernels for data with group structure
The use of kernel functions is a common technique to extract important features from data sets. A quantum computer can be used to estimate kernel entries as transition amplitudes of unitary circuits. Quantum kernels exist that, subject to computational hardness assumptions, cannot be computed classically. It is an important challenge to find quantum kernels that provide an advantage in the classification of real-world data. We introduce a class of quantum kernels that can be used for data with a group structure. The kernel is defined in terms of a unitary representation of the group and a fiducial state that can be optimized using a technique called kernel alignment. We apply this method to a learning problem on a coset-space that embodies the structure of many essential learning problems on groups. We implement the learning algorithm with 27 qubits on a superconducting processor.
Outlier-Robust Multi-Model Fitting on Quantum Annealers
Multi-model fitting (MMF) presents a significant challenge in Computer Vision, particularly due to its combinatorial nature. While recent advancements in quantum computing offer promise for addressing NP-hard problems, existing quantum-based approaches for model fitting are either limited to a single model or consider multi-model scenarios within outlier-free datasets. This paper introduces a novel approach, the robust quantum multi-model fitting (R-QuMF) algorithm, designed to handle outliers effectively. Our method leverages the intrinsic capabilities of quantum hardware to tackle combinatorial challenges inherent in MMF tasks, and it does not require prior knowledge of the exact number of models, thereby enhancing its practical applicability. By formulating the problem as a maximum set coverage task for adiabatic quantum computers (AQC), R-QuMF outperforms existing quantum techniques, demonstrating superior performance across various synthetic and real-world 3D datasets. Our findings underscore the potential of quantum computing in addressing the complexities of MMF, especially in real-world scenarios with noisy and outlier-prone data.
Simulation of integrated nonlinear quantum optics: from nonlinear interferometer to temporal walk-off compensator
Nonlinear quantum photonics serves as a cornerstone in photonic quantum technologies, such as universal quantum computing and quantum communications. The emergence of integrated photonics platform not only offers the advantage of large-scale manufacturing but also provides a variety of engineering methods. Given the complexity of integrated photonics engineering, a comprehensive simulation framework is essential to fully harness the potential of the platform. In this context, we introduce a nonlinear quantum photonics simulation framework which can accurately model a variety of features such as adiabatic waveguide, material anisotropy, linear optics components, photon losses, and detectors. Furthermore, utilizing the framework, we have developed a device scheme, chip-scale temporal walk-off compensation, that is useful for various quantum information processing tasks. Applying the simulation framework, we show that the proposed device scheme can enhance the squeezing parameter of photon-pair sources and the conversion efficiency of quantum frequency converters without relying on higher pump power.
Experimental Estimation of Quantum State Properties from Classical Shadows
Full quantum tomography of high-dimensional quantum systems is experimentally infeasible due to the exponential scaling of the number of required measurements on the number of qubits in the system. However, several ideas were proposed recently for predicting the limited number of features for these states, or estimating the expectation values of operators, without the need for full state reconstruction. These ideas go under the general name of shadow tomography. Here we provide an experimental demonstration of property estimation based on classical shadows proposed in [H.-Y. Huang, R. Kueng, J. Preskill. Nat. Phys. https://doi.org/10.1038/s41567-020-0932-7 (2020)] and study its performance in the quantum optical experiment with high-dimensional spatial states of photons. We show on experimental data how this procedure outperforms conventional state reconstruction in fidelity estimation from a limited number of measurements.
Experimental demonstration of memory-enhanced quantum communication
The ability to communicate quantum information over long distances is of central importance in quantum science and engineering. For example, it enables secure quantum key distribution (QKD) relying on fundamental principles that prohibit the "cloning" of unknown quantum states. While QKD is being successfully deployed, its range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising its unconditional security. Alternatively, quantum repeaters, which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge, requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we report the experimental realization of memory-enhanced quantum communication. We use a single solid-state spin memory integrated in a nanophotonic diamond resonator to implement asynchronous Bell-state measurements. This enables a four-fold increase in the secret key rate of measurement device independent (MDI)-QKD over the loss-equivalent direct-transmission method while operating megahertz clock rates. Our results represent a significant step towards practical quantum repeaters and large-scale quantum networks.
Three-level Dicke quantum battery
Quantum battery (QB) is the energy storage and extraction device that is governed by the principles of quantum mechanics. Here we propose a three-level Dicke QB and investigate its charging process by considering three quantum optical states: a Fock state, a coherent state, and a squeezed state. The performance of the QB in a coherent state is substantially improved compared to a Fock and squeezed states. We find that the locked energy is positively related to the entanglement between the charger and the battery, and diminishing the entanglement leads to the enhancement of the ergotropy. We demonstrate the QB system is asymptotically free as N rightarrow infty. The stored energy becomes fully extractable when N=10, and the charging power follows the consistent behavior as the stored energy, independent of the initial state of the charger.
Differential Privacy of Quantum and Quantum-Inspired-Classical Recommendation Algorithms
We analyze the DP (differential privacy) properties of the quantum recommendation algorithm and the quantum-inspired-classical recommendation algorithm. We discover that the quantum recommendation algorithm is a privacy curating mechanism on its own, requiring no external noise, which is different from traditional differential privacy mechanisms. In our analysis, a novel perturbation method tailored for SVD (singular value decomposition) and low-rank matrix approximation problems is introduced. Using the perturbation method and random matrix theory, we are able to derive that both the quantum and quantum-inspired-classical algorithms are big(mathcal{O}big(frac 1nbig),,, mathcal{O}big(1{min{m,n}}big)big)-DP under some reasonable restrictions, where m and n are numbers of users and products in the input preference database respectively. Nevertheless, a comparison shows that the quantum algorithm has better privacy preserving potential than the classical one.
Supervised learning with quantum enhanced feature spaces
Machine learning and quantum computing are two technologies each with the potential for altering how computation is performed to address previously untenable problems. Kernel methods for machine learning are ubiquitous for pattern recognition, with support vector machines (SVMs) being the most well-known method for classification problems. However, there are limitations to the successful solution to such problems when the feature space becomes large, and the kernel functions become computationally expensive to estimate. A core element to computational speed-ups afforded by quantum algorithms is the exploitation of an exponentially large quantum state space through controllable entanglement and interference. Here, we propose and experimentally implement two novel methods on a superconducting processor. Both methods represent the feature space of a classification problem by a quantum state, taking advantage of the large dimensionality of quantum Hilbert space to obtain an enhanced solution. One method, the quantum variational classifier builds on [1,2] and operates through using a variational quantum circuit to classify a training set in direct analogy to conventional SVMs. In the second, a quantum kernel estimator, we estimate the kernel function and optimize the classifier directly. The two methods present a new class of tools for exploring the applications of noisy intermediate scale quantum computers [3] to machine learning.
Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning
The emergence of quantum reinforcement learning (QRL) is propelled by advancements in quantum computing (QC) and machine learning (ML), particularly through quantum neural networks (QNN) built on variational quantum circuits (VQC). These advancements have proven successful in addressing sequential decision-making tasks. However, constructing effective QRL models demands significant expertise due to challenges in designing quantum circuit architectures, including data encoding and parameterized circuits, which profoundly influence model performance. In this paper, we propose addressing this challenge with differentiable quantum architecture search (DiffQAS), enabling trainable circuit parameters and structure weights using gradient-based optimization. Furthermore, we enhance training efficiency through asynchronous reinforcement learning (RL) methods facilitating parallel training. Through numerical simulations, we demonstrate that our proposed DiffQAS-QRL approach achieves performance comparable to manually-crafted circuit architectures across considered environments, showcasing stability across diverse scenarios. This methodology offers a pathway for designing QRL models without extensive quantum knowledge, ensuring robust performance and fostering broader application of QRL.
Fault-tolerant simulation of Lattice Gauge Theories with gauge covariant codes
We show in this paper that a strong and easy connection exists between quantum error correction and Lattice Gauge Theories (LGT) by using the Gauge symmetry to construct an efficient error-correcting code for Abelian LGTs. We identify the logical operations on this gauge covariant code and show that the corresponding Hamiltonian can be expressed in terms of these logical operations while preserving the locality of the interactions. Furthermore, we demonstrate that these substitutions actually give a new way of writing the LGT as an equivalent hardcore boson model. Finally we demonstrate a method to perform fault-tolerant time evolution of the Hamiltonian within the gauge covariant code using both product formulas and qubitization approaches. This opens up the possibility of inexpensive end to end dynamical simulations that save physical qubits by blurring the lines between simulation algorithms and quantum error correcting codes.
Teleportation of entanglement over 143 km
As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for quantum states. This calls for more advanced techniques in a future global quantum network, e.g. for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e. entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 standard deviations beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Since our results already allow for efficient implementation of entanglement purification, we anticipate our assay to lay the ground for a fully-fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.
