SentenceTransformer based on FacebookAI/xlm-roberta-base
This is a sentence-transformers model finetuned from FacebookAI/xlm-roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
👉 Check out the model on GitHub.
Model Details
Model Description
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("panalexeu/xlm-roberta-ua-distilled")
sentences = [
"You'd better consult the doctor.",
'Краще проконсультуйся у лікаря.',
'Їх позначають як Aufklärungsfahrzeug 93 та Aufklärungsfahrzeug 97 відповідно.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Knowledge Distillation
| Metric |
Value |
| negative_mse |
-1.1089 |
Semantic Similarity
| Metric |
sts17-en-en |
sts17-en-ua |
sts17-ua-ua |
| pearson_cosine |
0.6785 |
0.5926 |
0.6159 |
| spearman_cosine |
0.7308 |
0.6198 |
0.6446 |
Training Details
Training Dataset
- Dataset: parallel-sentences-talks, parallel-sentences-wikimatrix, parallel-sentences-tatoeba
- Size: 523,982 training samples
- Columns:
english, non_english, and label
- Approximate statistics based on the first 1000 samples:
|
english |
non_english |
label |
| type |
string |
string |
list |
| details |
- min: 5 tokens
- mean: 21.11 tokens
- max: 254 tokens
|
- min: 4 tokens
- mean: 23.15 tokens
- max: 293 tokens
|
|
- Samples:
| english |
non_english |
label |
Her real name is Lydia (リディア, Ridia), but she was mistaken for a boy and called Ricard. |
Справжнє ім'я — Лідія, але її помилково сприйняли за хлопчика і назвали Рікард. |
[0.15217968821525574, -0.17830222845077515, -0.12677159905433655, 0.22082313895225525, 0.40085524320602417, ...] |
(Applause) So he didn't just learn water. |
(Аплодисменти) Він не тільки вивчив слово "вода". |
[-0.1058148592710495, -0.08846072107553482, -0.2684604823589325, -0.105219267308712, 0.3050258755683899, ...] |
It is tightly integrated with SAM, the Storage and Archive Manager, and hence is often referred to as SAM-QFS. |
Вона тісно інтегрована з SAM (Storage and Archive Manager), тому часто називається SAM-QFS. |
[0.03270340710878372, -0.45798248052597046, -0.20090211927890778, 0.006579531356692314, -0.03178019821643829, ...] |
- Loss:
MSELoss
Evaluation Dataset
- Dataset: parallel-sentences-talks, parallel-sentences-wikimatrix, parallel-sentences-tatoeba
- Size: 3,838 evaluation samples
- Columns:
english, non_english, and label
- Approximate statistics based on the first 1000 samples:
|
english |
non_english |
label |
| type |
string |
string |
list |
| details |
- min: 5 tokens
- mean: 15.64 tokens
- max: 143 tokens
|
- min: 5 tokens
- mean: 16.98 tokens
- max: 148 tokens
|
|
- Samples:
| english |
non_english |
label |
I have lost my wallet. |
Я загубив гаманець. |
[-0.11186987161636353, -0.03419225662946701, -0.31304317712783813, 0.0838347002863884, 0.108644500374794, ...] |
It's a pharmaceutical product. |
Це фармацевтичний продукт. |
[0.04133488982915878, -0.4182000756263733, -0.30786487460136414, -0.09351564198732376, -0.023946482688188553, ...] |
We've all heard of the Casual Friday thing. |
Всі ми чули про «джинсову п’ятницю» (вільна форма одягу). |
[-0.10697802156209946, 0.21002227067947388, -0.2513434886932373, -0.3718843460083008, 0.06871984899044037, ...] |
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
gradient_accumulation_steps: 3
num_train_epochs: 4
warmup_ratio: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 3
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 4
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size: 0
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
mse-en-ua_negative_mse |
sts17-en-en_spearman_cosine |
sts17-en-ua_spearman_cosine |
sts17-ua-ua_spearman_cosine |
| 0.0938 |
1024 |
0.3281 |
0.0297 |
-2.9592 |
0.2325 |
0.1547 |
0.2265 |
| 0.1876 |
2048 |
0.1136 |
0.2042 |
-21.6693 |
0.0553 |
0.0429 |
0.2442 |
| 0.2814 |
3072 |
0.1008 |
0.0273 |
-2.7461 |
0.2666 |
0.0758 |
0.2613 |
| 0.3752 |
4096 |
0.0843 |
0.0243 |
-2.4623 |
0.2541 |
0.0012 |
0.3680 |
| 0.4690 |
5120 |
0.0756 |
0.0216 |
-2.2095 |
0.3933 |
0.2535 |
0.4342 |
| 0.5628 |
6144 |
0.0661 |
0.0187 |
-1.9539 |
0.5739 |
0.4222 |
0.5056 |
| 0.6566 |
7168 |
0.0579 |
0.0164 |
-1.7513 |
0.6184 |
0.4897 |
0.5826 |
| 0.7504 |
8192 |
0.0526 |
0.0153 |
-1.6546 |
0.6219 |
0.4568 |
0.5842 |
| 0.8442 |
9216 |
0.0488 |
0.0142 |
-1.5525 |
0.6160 |
0.5012 |
0.5884 |
| 0.9380 |
10240 |
0.046 |
0.0135 |
-1.4957 |
0.6361 |
0.5046 |
0.5969 |
| 1.0318 |
11264 |
0.0437 |
0.0130 |
-1.4506 |
0.6453 |
0.5093 |
0.5939 |
| 1.1256 |
12288 |
0.0419 |
0.0125 |
-1.4049 |
0.6403 |
0.5054 |
0.6020 |
| 1.2194 |
13312 |
0.0404 |
0.0122 |
-1.3794 |
0.6654 |
0.5442 |
0.6182 |
| 1.3132 |
14336 |
0.0394 |
0.0118 |
-1.3434 |
0.6800 |
0.5790 |
0.6291 |
| 1.4070 |
15360 |
0.0383 |
0.0115 |
-1.3184 |
0.6836 |
0.5805 |
0.6301 |
| 1.5008 |
16384 |
0.0375 |
0.0114 |
-1.3067 |
0.6742 |
0.5555 |
0.6055 |
| 1.5946 |
17408 |
0.0368 |
0.0111 |
-1.2864 |
0.6909 |
0.5765 |
0.6256 |
| 1.6884 |
18432 |
0.036 |
0.0109 |
-1.2633 |
0.6875 |
0.5801 |
0.6178 |
| 1.7822 |
19456 |
0.0353 |
0.0107 |
-1.2490 |
0.7060 |
0.5959 |
0.6322 |
| 1.8760 |
20480 |
0.035 |
0.0106 |
-1.2357 |
0.7127 |
0.6047 |
0.6389 |
| 1.9698 |
21504 |
0.0344 |
0.0105 |
-1.2265 |
0.7265 |
0.6233 |
0.6459 |
| 2.0636 |
22528 |
0.0335 |
0.0103 |
-1.2108 |
0.7184 |
0.6151 |
0.6438 |
| 2.1574 |
23552 |
0.0327 |
0.0103 |
-1.2101 |
0.7122 |
0.6074 |
0.6427 |
| 2.2512 |
24576 |
0.0324 |
0.0102 |
-1.1972 |
0.7232 |
0.6174 |
0.6447 |
| 2.3450 |
25600 |
0.0322 |
0.0100 |
-1.1813 |
0.7217 |
0.6166 |
0.6457 |
| 2.4388 |
26624 |
0.032 |
0.0099 |
-1.1745 |
0.7308 |
0.6272 |
0.6534 |
| 2.5326 |
27648 |
0.0316 |
0.0098 |
-1.1673 |
0.7289 |
0.6125 |
0.6441 |
| 2.6264 |
28672 |
0.0314 |
0.0098 |
-1.1622 |
0.7222 |
0.6105 |
0.6365 |
| 2.7202 |
29696 |
0.0312 |
0.0097 |
-1.1593 |
0.7175 |
0.6121 |
0.6348 |
| 2.8140 |
30720 |
0.0308 |
0.0096 |
-1.1457 |
0.7204 |
0.6044 |
0.6377 |
| 2.9078 |
31744 |
0.0307 |
0.0095 |
-1.1411 |
0.7230 |
0.6175 |
0.6353 |
| 3.0016 |
32768 |
0.0305 |
0.0095 |
-1.1414 |
0.7130 |
0.6052 |
0.6340 |
| 3.0954 |
33792 |
0.0296 |
0.0095 |
-1.1360 |
0.7234 |
0.6160 |
0.6411 |
| 3.1892 |
34816 |
0.0295 |
0.0094 |
-1.1317 |
0.7220 |
0.6131 |
0.6396 |
| 3.2830 |
35840 |
0.0294 |
0.0094 |
-1.1306 |
0.7315 |
0.6167 |
0.6505 |
| 3.3768 |
36864 |
0.0293 |
0.0094 |
-1.1263 |
0.7219 |
0.6089 |
0.6450 |
| 3.4706 |
37888 |
0.0292 |
0.0093 |
-1.1225 |
0.7236 |
0.6141 |
0.6451 |
| 3.5644 |
38912 |
0.0291 |
0.0093 |
-1.1204 |
0.7331 |
0.6179 |
0.6460 |
| 3.6582 |
39936 |
0.029 |
0.0092 |
-1.1147 |
0.7226 |
0.6127 |
0.6406 |
| 3.7520 |
40960 |
0.029 |
0.0092 |
-1.1118 |
0.7245 |
0.6184 |
0.6425 |
| 3.8458 |
41984 |
0.0289 |
0.0092 |
-1.1102 |
0.7279 |
0.6179 |
0.6465 |
| 3.9396 |
43008 |
0.0288 |
0.0092 |
-1.1099 |
0.7298 |
0.6191 |
0.6438 |
| 3.9997 |
43664 |
- |
0.0092 |
-1.1089 |
0.7308 |
0.6198 |
0.6446 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.5.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}